
FlightLLM: Efficient Large Language Model Inference
with a Complete Mapping Flow on FPGAs

Shulin Zeng∗
Tsinghua University

Infinigence-AI

Jun Liu∗
Shanghai Jiao Tong University

Infinigence-AI

Guohao Dai†
Shanghai Jiao Tong University

Infinigence-AI

Xinhao Yang
Tsinghua University

Infinigence-AI

Tianyu Fu
Tsinghua University

Infinigence-AI

Hongyi Wang
Tsinghua University

Infinigence-AI

Wenheng Ma
Tsinghua University

Hanbo Sun
Tsinghua University

Shiyao Li
Tsinghua University

Infinigence-AI

Zixiao Huang
Tsinghua University

Yadong Dai
Infinigence-AI

Jintao Li
Infinigence-AI

Zehao Wang
Infinigence-AI

Ruoyu Zhang
Infinigence-AI

Kairui Wen
Infinigence-AI

Xuefei Ning
Tsinghua University

Yu Wang†
Tsinghua University

ABSTRACT
Transformer-based Large Language Models (LLMs) have made
a significant impact on various domains. However, LLMs’ effi-
ciency suffers from both heavy computation and memory over-
heads. Compression techniques like sparsification and quantization
are commonly used to mitigate the gap between LLM’s computa-
tion/memory overheads and hardware capacity. However, existing
GPU and transformer-based accelerators cannot efficiently process
compressed LLMs, due to the following unresolved challenges: low
computational efficiency, underutilized memory bandwidth, and
large compilation overheads.

This paper proposes FlightLLM, enabling efficient LLMs infer-
ence with a complete mapping flow on FPGAs. In FlightLLM, we
highlight an innovative solution that the computation and mem-
ory overhead of LLMs can be solved by utilizing FPGA-specific
resources (e.g., DSP48 and heterogeneous memory hierarchy). We
propose a configurable sparse DSP chain to support different spar-
sity patterns with high computation efficiency. Second, we propose
an always-on-chip decode scheme to boost memory bandwidth
with mixed-precision support. Finally, to make FlightLLM available
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for real-world LLMs, we propose a length adaptive compilation
method to reduce the compilation overhead. Implemented on the
Xilinx Alveo U280 FPGA, FlightLLM achieves 6.0× higher energy
efficiency and 1.8× better cost efficiency against commercial GPUs
(e.g., NVIDIA V100S) on modern LLMs (e.g., LLaMA2-7B) using
vLLM and SmoothQuant under the batch size of one. FlightLLM
beats NVIDIA A100 GPU with 1.2× higher throughput using the
latest Versal VHK158 FPGA.
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1 INTRODUCTION
Recently, we have witnessed the rapid development and significant
impact of Large LanguageModels (LLMs) [5, 48]. LLMs demonstrate
amazing power to understand all the users’ input requests (prefill
stage) and generate accurate responses token-by-token (decode
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Figure 1: FlightLLM on Alveo U280 FPGA outperforms
NVIDIAV100SGPU (using vLLM [31] and SmoothQuant [49])
with better performance and cost efficiency.

stage). LLMs are being widely used in latency-sensitive scenar-
ios [36], such as code completion [42], real-time chatbots [7, 40],
customer support [26], online legal advice [12], and beyond. The
latency is critical for a good user experience, and the batch size
is usually set as 1 to meet the real-time requirement. However,
current LLMs suffer from both heavy computation and memory
overheads because of the explosive growth model size of LLMs.
Taking GPT-3 [6] as an example, it has 175 billion parameters (i.e.,
350GB in FP16), requiring about 660TOPS of computation amount
to complete a single inference.

Model compression methods [13] (e.g., sparsification, quanti-
zation, etc.) are commonly applied to address the above issues.
However, the unique computation schemes of these methods are
not efficiently supported by current hardware platforms, like GPUs,
for LLMs. From the computation perspective, current GPUs only
support structured sparsity (e.g., 2:4 sparsity), leading to significant
algorithm accuracy loss of LLMs [19]. In contrast, the unstructured
sparsity ensuring algorithm accuracy cannot bring end-to-end ac-
celeration for LLMs. For example, the 75% unstructured sparsity
only leads to negligible end-to-end speedup [18]. From the mem-
ory perspective, quantization and large on-chip memory can re-
duce data access. Recent algorithm studies [14, 28] are pushing
the limit of bit-width with mixed-precision quantization. How-
ever, the alignment feature of GPU’s cache and SIMD architecture
requires homogeneous bit-widths of LLM parameters for weight
access reduction [49]. Compounding the issue, GPU’s KB-scaled
share memory of SMs cannot hold all the activations for LLM text
generation.

FPGAs are potential solutions to accelerate LLM inference and
explore the benefits brought by model compression, which has
been proven in previous deep learning models [21, 22, 39, 43, 55].
However, efficient LLM inference on FPGAs needs to solve the
following challenges (Fig. 2):

• Low computation efficiency. Flexible sparsity patterns
(e.g., block sparsity [53], N:M sparsity [8], etc.) in LLM leads
to low computation efficiency.

• Underutilized memory bandwidth. The decode stage of
LLM repetitively accesses fine-grained data from off-chip
memory, leading to underutilized bandwidth (29-43%).

• Large compilation overheads. The dynamic sparsity pat-
terns and input lengths of LLMs constitute a large design
space. For example, generating instructions for 2048 input
token length results in ∼TB storage overhead on FPGAs.
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Figure 2: Three challenges of LLM inference on FPGAs, and
the corresponding solutions in FlightLLM.

In this paper, we propose FlightLLM, enabling efficient LLMs in-
ference with a complete mapping flow on FPGAs (Fig. 1). FlightLLM
innovatively points out that the computation and memory over-
head of LLMs can be solved by utilizing FPGA-specific resources
(e.g., DSP48 and heterogeneous memory hierarchy). To address
the challenges of low computation efficiency, FlightLLM exploits
a configurable sparse DSP chain. We introduce a flexible cascaded
DSP48 architecture to support different sparsity patterns with high
computation efficiency (i.e., runtime DSP utilization). To tackle the
underutilized memory bandwidth, FlightLLM proposes an always-
on-chip decode scheme. Activations reside in the on-chip memory
during the decode stage with the support of mixed-precision quan-
tization. To reduce the compilation overhead, FlightLLM proposes
a length adaptive compilation method. Instructions for consecutive
input token length are grouped, and the total storage overhead for
instructions can be reduced.

The main contributions of this paper are as follows.
• Wepropose a configurable sparse DSP chain to support differ-
ent sparsity patterns. FlightLLM improves the computation
efficiency by 1.6× with block-wise and N:M sparsity.

• We propose an always-on-chip decode scheme with mixed-
precision support. FlightLLM boosts the memory bandwidth
from 35.6% to 65.9%.

• We propose a length adaptive compilation method to reduce
the instruction storage overhead by 500× (∼GB), enabling
deploying real-world LLMs onto FPGAs.

We implement FlightLLM on the Xilinx Alveo U280 FPGA 1. Eval-
uated on the OPT-6.7B and LLaMA2-7B, FlightLLM achieves better
end-to-end latency than NVIDIA V100S GPU using vLLM [31] and
SmoothQuant [49] under the batch size of one. Besides, FlightLLM
outperforms NVIDIA V100S and A100 GPU with 6.0× and 4.2×
higher energy efficiency, and 1.8× and 1.4× better cost efficiency on
average, respectively. When evaluated on the latest Versal VHK158
FPGA, FlightLLM beats NVIDIAA100with 1.2× higher throughput.

1Artifact is available at: https://zenodo.org/doi/10.5281/zenodo.10422477

https://zenodo.org/doi/10.5281/zenodo.10422477
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Figure 3: The (a) prefill and (b) decode stage of LLMs. Colored
squares are weights or cached data. Gray denotes activations.

2 BACKGROUND AND RELATEDWORK
2.1 Background
Transformer-based LLMs [41, 54] achieve state-of-the-art (SOTA)
performance across all kinds of Natural Language Processing (NLP)
tasks. The transformer model architecture consists of many cas-
caded transformer blocks and each transformer block generally
includes two types of networks: the Multi-Head Attention (MHA)
and the Feed Forward Network (FFN).

Given 𝑁 input tokens embedded in 𝐷 dimensional space 𝑋 ∈
R𝑁×𝐷 , the MHA projects the token embedding as ℎ heads’ query
𝑄 , key 𝐾 and value 𝑉 matrices in Rℎ×𝑁×𝐷 space and performs
attention operation for each head as shown in equation 1.

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 ,𝑉 = 𝑋𝑊𝑉 ;𝑂 = softmax(𝑄𝐾𝑇 )𝑉 (1)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 represent the weight matrix in MHA.
The FFN further transforms each token embedding. Given the

MHA output matrix 𝑂 ∈ Rℎ×𝑁×𝐷 , FFN passes it through two
fully connected layers with a non-linear activation function 𝑔 and
generates the token embedding for the next transformer block.

𝑋 = 𝑔(𝑂𝑊1)𝑊2 (2)

where,𝑊1,𝑊2 represent the two weight matrix in FFN.
As shown in Fig. 3, the workflow of LLMs can be divided into

two main stages: the prefill stage and the decode stage. In the prefill
stage, LLM takes a prompt from the user which is a sequence of
tokens as the input (e.g. the "Who won ?" in Figure.3 (a)). Then,
LLM will understand the context of the prompt and generates the
first response token (e.g. the "Alex" in Figure.3 (a)). All the 𝑁 input
tokens are processed simultaneously with high throughput. In the
decode stage, LLM treats the newly generated token as length𝑁 = 1
input and generates the next token (e.g. the "won" in Figure.3 (b)).
Since LLM only processes one new token at a time in the decode
stage, the matrix-matrix multiplications in equation 1 and 2 become
matrix-vector multiplications. The decode stage is called iteratively
to generate the response token by token.

2.2 Related Work
Efficient Transformer. To tackle the extreme overhead of LLMs,
various compression techniques are commonly used. Quantiza-
tion [15, 20, 33, 49, 52] approaches use low-bit integers to substitute
the 16-bit floating point parameters and activations for inference.

Computing Core

Memory 
Management 
Unit (MMU)

Matrix
Processing

Engine (MPE)

Special
Function

Unit (SFU)

Instruction Scheduler

HBM DDR

Memory Controller

Task
SchedulerCPU

Figure 4: The overall architecture of FlightLLM, including
task scheduler, memory controller and computing cores.

Sparse attention [4, 8, 9, 45, 53] and weight pruning [19, 30] ap-
proaches skip part of the attention matrix or weight matrix comput-
ing according to the defined sparse pattern. Various sparse patterns
are proposed for different tasks and transformers, including lo-
cal diagonal pattern [4], block sparse [9, 29, 30, 53], N:M sparse
pattern [8, 19], row-column skipping pattern [45], unstructured
pattern [19] and so on.

LLM-related Accelerators. Previous work [17, 23–25, 27, 32, 34,
37, 45, 47] propose customized architecture design for transformer
models. Some work [17, 24, 32, 34, 44, 45] lay more emphasis on
accelerating sparse attention. They design specialized architectures
to fully utilize the pre-defined static attention pattern [17, 32] or
dynamically generated attention pattern [34, 37, 44, 45]. Recently,
FACT [37] points out the importance of compressing linear layers
with mixed-precision quantization to help reduce latency. However,
these methods cannot accelerate the decode stage of LLMs since
they mainly focus on the prefill stage for discriminative models,
like medium-sized BERT [16] model. DFX [25] emphasizes the ac-
celeration of the decode stage of LLMs. However, it lacks hardware
support for model compression of LLMs, making it hard to further
expand model size or maximum token size.

3 COMPUTING ARCHITECTURE
3.1 Overall Architecture
We design a high-performance FPGA-based accelerator for gen-
erative LLMs by making full use of FPGA resources. Combined
with compression techniques like sparsification and quantization,
FlightLLM can effectively accelerate the generative LLMs and re-
duce the inference overhead. As shown in Fig. 4, the overall hard-
ware architecture of FlightLLM mainly includes a task scheduler,
memory controller, and multiple computing cores (short as cores).
The accelerator uses model parallelism on multiple cores to com-
plete the LLM inference task. The task scheduler assigns tasks to
different cores and controls data synchronization.

The components of each core include the unified Matrix Pro-
cessing Engine (MPE), Memory Management Unit (MMU), Special
Function Unit (SFU), and Instruction Scheduler. The instruction
scheduler decodes the input instructions and schedules different
hardware units to perform computations. The main functions of the
remaining hardware units are as follows:MPE handles all matrix
(i.e., dense and sparse) operations in LLMs. MPE utilizes the config-
urable sparse DSP chain to reduce the hardware overhead on FPGA.
MMU reduces memory access overheads by designing customized
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quantization units for low-bit mixed-precision and optimizing data
placement for off-chip memory. SFU handles miscellaneous opera-
tions (e.g., Softmax, etc.) besides matrix processing operations. It
also provides an additional data path to share data with other SFUs
in different cores, accelerating the MV operation.

3.2 Unified Matrix Processing Engine
Although sparsification can bring huge theoretical benefits to LLM
inference, they cannot directly achieve these benefits on existing
architectures. To maximize the benefits of sparsification, we design
the unifiedMatrix Processing Engine (MPE) to handle all operations
related to matrix computation, including General Matrix Multiplica-
tion (GEMM), SparseMatrix-Matrixmultiplication (SpMM), General
Matrix-Vector multiplication (GEMV), Sparse Matrix-Vector multi-
plication (SpMV), and Sampled-Dense-Dense Matrix Multiplication
(SDDMM). As shown in Fig. 5(a), the MPE includes multiple Matrix
Processing Units (MPUs), which transfer weights from the weight
buffer using the streaming approach. The activation buffer and the
global buffer store the input and output activations of the MPE,
respectively. By configuring the MPU, the MPE can support both
matrix-matrix multiplication (MM) (Fig. 5(b)) and matrix-vector
multiplication (MV) mode (Fig. 5(c)). TheMPU is composed of multi-
ple vector processing units (VPUs). The VPU is the basic component
in the MPE, which performs the dot product of two vectors.

We build the unified MPE to support all the five operator on the
same hardware achitecture. FlightLLM overcomes the challenge of
low computational efficiency through hardware/software co-design.
To do this, we first introduce the MPU, which exploits configurable
sparse DSP chain to reduce hardware overhead while supporting
sparse reduction. We use the MM mode as an example to illustrate
the main idea and the implementation of MPU. Then, we re-design
MPE’s parallel scheme to maximize the performance in the MV
mode. Finally, we introduce the SDDMM support through simple
instruction scheduling.

3.2.1 MPUDesign. In transformer-based LLMs, sparsificationmeth-
ods including sparse attention and weight pruning are widely used
to accelerate the LLM inference. The sparse pruning generates
sparse matrix, whose densities and sparse patterns are uncertain. It

brings great challenges to hardware design, especially for FPGA-
based architectures that use the fixed DSP48 as the multiplication
unit. Existing work introduces large additional hardware architec-
tures to support sparse computations, which leads to a significant
increase in hardware resources (about 5× [38]). Without proper
architectural design, the benefit of sparsification is weakened.

We utilize the DSP48 engine on FPGA to support sparse oper-
ations. In order to reduce the hardware overhead, previous work
cascades the DSPs to take full advantage of the hardware resources
in DSP48. DSP cascading makes the most use of the accumulator,
the result carry-out port, and the result carry-in port, improving the
hard-core utilization. However, the fully cascaded DSP architecture
are not friendly to sparse computation since the cascaded chain is a
fixed path. In FlightLLM, we propose a configurable sparse DSP
chain (CSD-Chain) to supplement the fixed DSP chain. In the
CSD-Chain, a long DSP chain is divided into several DSP groups.
A DSP group (DG) has several DSP48 cores, that are cascaded in
a fixed manner. We pack two INT8 MACs on DSP48 [1]. Differ-
ent DGs are cascaded with a configurable path. A VPU is made
up of a CSD-Chain and a MPU consists of several VPUs. Fig. 5(d)
shows the architecture of the CSD-Chain based VPU. Each DG has
two DSP48 cores. We use configurable cascading to support sparse
matrix operations by adding three units to the fixed DSP chain.

Sparse Mux. As shown in Fig. 5(d), two activations (A and B) are
delivered to one DSP48 core simultaneously for weight reuse. Before
the delivery, they are sent to a sparse MUX unit. In the sparse MUX
unit, each activation is selected from multiple inputs according
to the sparse index (shown in Fig. 5(b)). With this sparse-based
multiplexer, only nonzero inputs are sent to the DSP48 core.

Reduction Node (RN). Compared to GEMM operations, cal-
culating SpMM may produce more outputs, as demonstrated in
Fig. 6(b). Thus, DSPs are grouped in our design to implement non-
breaking MAC and a reduction node are inserted at the end of a
DG. When a SpMM operation wants to generate multiple outputs,
the RN will break the configurable cascade path between DGs, and
calculate the output. Other DGs on the CSD-Chain will start a new
SpMM computation by selecting zero in the Z-MUX.

Overflow Adjust Unit (OAU). When a DSP48 shares a weight
with two activations, only 18 bits can be accessed for each activation.
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As a result, a long cascade accumulation may overflow. Therefore,
we adjust the output data before sending it to the next DG. In the
overflow adjust unit, the result is split into a most significant part
(MSP) and a least significant part (LSP). The LSP cascades to the
next DSP48 with limited bits to avoid accumulation overflow. The
MSP are delivered to the RN in the next DG to calibrate the output
result. In this way, all accumulators in DSP48 are fully utilized.
Since a 18-bit integer will never overflow if no more than eight
16-bit integer are accumulated, the OAU is skipped with no more
than eight DSP48 cores.

Due to the configurable cascade path, VPU with the CSD-Chain
can efficiently work on both dense and sparse multiplications. As
shown in Fig. 6, all DSP48 cores are fully used in both cases. The only
difference is that the RN in sparse case will break the CSD-Chain
into two individual DSP chains to execute two different MACs and
produce two outputs.

Supporting sparse matrix multiplication could improve the com-
putation efficiency. But arbitrary sparsity may cause data mismatch
between different DGs, leading to unexpected efficiency decrease.
Existing work shows that N:M sparse pattern is a promising sparsi-
fication method. It maintains the same sparsity ratio within each
matrix block, and allocates different sparsity ratios among differ-
ent matrix blocks. Where M is an integer power of 2, and N is the
partial factor of M. For example, M=16, N=0, 2, 4, 8, 16. The N:M
sparse method restricts the number and position of nonzero ele-
ments while maintaining flexible sparsity. It can be easily mapped
to a CSD-Chain. For a N:M sparse architecture, a CSD-Chain can
be splited into N groups. Each DSP will select one input from M
inputs. In each cycle, the entire CSD-Chain can produce one MAC
output in dense case and N MAC outputs in N:M sparse case. Fig. 6
shows the case of a VPU supporting 2:4 sparse pattern.

3.2.2 Matrix-Vector Multiplication Analysis. We explore the hyper-
parameter space of compute tiling to fully utilize the off-chip mem-
ory bandwidth. We model the memory access time 𝑇𝑚𝑒𝑚 and com-
puting time 𝑇𝑐𝑚𝑝 of general MM in equation 3.𝑀 × 𝐾 , 𝐾 × 𝑁 , and
𝑀 × 𝑁 denote the shapes of two input matrices and one output
matrix, respectively. 𝑝𝑀 , 𝑝𝐾 , and 𝑝𝑁 denote the three dimensions
of computational parallelism in matrix computation. 𝐵𝑊 denotes
the off-chip bandwidth.
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𝑇𝑚𝑒𝑚 =
𝑀 · 𝐾 + 𝐾 · 𝑁 +𝑀 · 𝑁

𝐵𝑊

𝑇𝑐𝑚𝑝 =
𝑀 · 𝐾 · 𝑁

𝑝𝑀 · 𝑝𝐾 · 𝑝𝑁

(3)

To overlap the computation and memory access with double-
buffer, we need to make sure that𝑇𝑚𝑒𝑚 < 𝑇𝑐𝑚𝑝 . For MV operations,
𝑀 = 1 and 𝑝𝑀 = 1 are set. For the MV mode, we can iterate
through the space to obtain a set of [𝑝′

𝐾
, 𝑝′
𝑁
] to guarantee the

bound for double-buffer. In other words, under the configuration
of [𝑝′

𝐾
, 𝑝′
𝑁
], we can realize that the MPE can still fully utilize the

off-chip memory bandwidth in MV mode, although the computing
resources in the MPE are partially idle at this time (Fig. 5(c)). By
redesigning the computational parallelism, MPUs can maximize the
execution performance of executing GEMV and SpMV on FPGAs.

3.2.3 SDDMM Support. SDDMM is the key operator of the sparse
self-attention layer. The block-wise sparsity of SDDMM can be
used to reduce the amount of computation and improve the hard-
ware energy efficiency. Therefore, we can treat SDDMM as multiple
GEMMs in a block-wise manner. We only need to do some pro-
cessing on the SDDMM operator with the instruction scheduler to
efficiently complete the SDDMM computation on the MPE.

3.3 Special Function Unit
Besides MM and MV computations, there are many other opera-
tions in LLMs, including softmax, layer normalization, etc. These
miscellaneous (MISC) operations can be classified into two types:
(a) Element-wise operation, which generates the result element by
element (such as element-add and concat); (b) Two-phase operation,
which will perform a reduction operation to get one or more param-
eters before the element-wise operation (such as softmax and layer
normalization). Unlike MM and MV operations, these operations
are not compute-intensive. Thus, we design a Special Function Unit
(SFU) to handle all MISC operators, as shown in Fig. 7. The SFU
splits a MISC instruction into micro-operations, and delivers each
micro-op to the ALU. The ALU will calculate the output accord-
ing to the micro-op. All the input data is fetched from the MMU.
For two-phase operations, the SFU will read an entire vector data
from MMU to generate necessary parameters and read the same
data again calculating the final output. For accuracy consideration,
softmax and layer normalization operations are calculated in fp16
since the hardware cost of SFU is acceptable.

Hiding the computation latency of MISC operations is important
to improve the end-to-end latency in LLMs. For MM and multi-head
MV operations, MISC calculations can be hidden between different
vectors. For MISC operations after single-head MV calculations, the
SFU breaks the entire vector into several sub-vectors and performs
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MISC operations in fine granularity to hide the computation latency.
In consideration of the scalability, multiple SFUs in different PEs
may work together by accessing remote SFUs. A SFU can share
parameters and calculation results with other SFUs. Thus, although
a vector may be generated by different PEs simultaneously, the
result could be sent to all other PEs without writing back to HBM.
It reduces the end-to-end latency and the wire overhead on FPGA.

4 ALWAYS-ON-CHIP DECODE
4.1 On-chip Decode Dataflow
In the decode stage, the main efficiency constraint arises from the
frequent access of off-chip memory for small data-volume activa-
tion vectors. To reduce off-chip memory access of activation vectors,
we employ the concept of operator fusion and fuse the computa-
tion within each inference of decode stage. Consequently, we can
significantly increase the off-chip HBM (High Bandwidth Memory)
bandwidth utilization from about 35.6% to 65.9%.

Since the activations in the decode stage are small data-volume
vectors instead of matrices, they can be fully accommodated by
the on-chip buffer of the FPGA. Therefore, to reduce the frequent
read and write operations of the activation vectors, we fuse the
computations of all layers during each inference of the decode
stage. Finally, the computation result is written back to the off-chip
memory at the end of each inference of the decode stage.

As depicted in Fig. 8(b), given that we can directly use the output
activation of the current layer as the input activation for the subse-
quent layer without writing the activation to off-chip memory, we
retain the output activations from linear or attention operations
within the on-chip buffer. Through appropriate scheduling, the
activation vector can consistently be stored in the on-chip buffer
and then processed by either the MPE or SFU.

Furthermore, as illustrated in Fig. 8(a), since there is no hardware
resource conflict between SFU and MPE computations, we fuse the
computations of these two different units to reduce the off-chip
memory access of the intermediate results. Specifically, for the
Softmax and LayerNorm operations, since they require a complete
activation vector, it requires the MV operator in MPE to compute the
activation vector before the MISC operator in SFU. For the activa-
tion functions (e.g., SiLU) and Element-wise addition/multiplication
(Eltwise), they are MISC operators in SFU that can be computed
immediately after the MV operators in MPE.

4.2 Discussion: Fusion in the Prefill
The MISC fusion for the prefill stage is similar to that of the decode
stage. However, the decode stage uses MV (see Table 1 in Sec. 5.1),
while the prefill stage uses MM for matrix multiplication. Thus, in
the prefill stage, Softmax and LayerNorm can start after the MM has
processed an activation vector, while Eltwise and SiLU can start
the computation after each MM.

In prefill attention computation, sparse attention can be applied.
The sparse attention computation can be divided into 3 steps, com-
puting𝑄𝐾𝑇 , Softmax, and 𝑆𝑉 , as shown in Fig. 8(c). When comput-
ing𝑄𝐾𝑇 , the computation result is sparse according to the attention
mask. When the zero attention mask completely covers the compu-
tation results, the corresponding LD and MM can be skipped. If the
zero attention mask covers a part of the computation results, the MM
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Figure 8: (a) MISC fusion with attention or linear operation.
And an example of always on-chip decode approach in the
(b) decode and (c) prefill stage.
instruction writes only the required part of the computation results
back into the global buffer and then performs Softmax. When com-
puting 𝑆𝑉 , the 𝑆 matrix is sparse, where the matrix 𝑆 stands for the
attention matrix after the Softmax operation. Thus, in the proposed
fused attention dataflow, Softmax and 𝑆𝑉 are only computed for
the parts that are not covered by the zero attention mask. The idea
of acceleration by fusion is similar to the decode stage.

4.3 Mixed-precision Support
The low-bit mixed-precision strategy can significantly reduce the
parameters and the off-chip memory access for LLMs. However,
GPU with the low-bit mixed-precision strategy (2/3/4/8-bit) makes
it difficult to reducememory access overhead. GPU uses SIMT-based
computing architecture, which cannot efficiently process irregular
and different bit-width data in memory. Therefore, we design a
dedicated mixed-precision dequantization unit on the FPGA, which
can efficiently process the compactly stored mixed-precision data
in the buffer and convert it into a unified INT8 format to the MPE.
Specifically, we transform mixed-precision multiplication (2/3/4-
bit) into INT8 multiplication, to avoid excessive LUT overhead. The
dequantization unit consists of a set of parallel bit-width expansion
units, which automatically expand the input data to 8 bits according
to the control signal, scale factor, and sign bit.

4.4 Memory Latency Optimization
We point out that the unique HBM+DDR hybrid memory system on
FPGA has advantages over both HBM-only and DDR-only in reduc-
ing memory access overhead for generative LLMs. As we discussed
in the previous section, the memory access patterns of SFU and
MPE are significantly different. MPE needs to handle large-scale
matrix multiplications, so single memory access is very large (∼M
Bytes). Using HBM can take full advantage of its high bandwidth.
However, the operations processed by SFU include Eltwise, Soft-
max, etc., which are characterized by small single memory access
data (∼100 Bytes). Because the memory access latency of HBM is
higher than DDR, and the refresh cycle is less than DDR [46, 56].
As a result, the overhead of HBM exceeds that of DDR when ac-
cessing a small amount of data. Therefore, we utilize the unique
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Table 1: ISA design of FlightLLM.

Inst. Discriptions

LD Load data from HBM or DDR to on-chip buffer.
ST Store data from on-chip buffer to HBM or DDR.
MM Calculate matrix-matrix multiplication C = XW𝑇 + b.
MV Calculate matrix-vector multiplication c = xW𝑇 + b.
MISC Calculate LayerNorm, SiLU, Softmax and Eltwise.
SYS Synchronize between multiple SLRs or with host CPU.

HBM+DDR hybrid memory system on the U280 FPGA to optimize
the inference of the generative LLM. Specifically, we store small
single-access data (e.g., Softmax, Silu, and Gelu lookup tables) on
DDR to take advantage of the low memory access latency of DDR.
We store large single-access data (e.g., KV cache, weights) on HBM
to take advantage of the high memory bandwidth of HBM.

5 SOFTWARE DESIGN
5.1 Instruction Set Architecture
Instruction Set Architecture (ISA) acts as a connection between
the LLM and hardware accelerator, consisting of six instructions
listed in Table 1. LD and ST stand for transmission between off-chip
(HBM or DDR) and on-chip memory. MM and MV represent for matrix-
matrix and matrix-vector multiplication respectively. MISC controls
other computations, including layer normalization (LayerNorm),
SiLU, Softmax, and Eltwise. SYS is responsible for synchronization
between multiple Super Logic Regions (SLRs) after each layer or
with the host CPU after each inference is completed.

5.2 Length Adaptive Compilation
5.2.1 Challenges. The instructions of FPGA accelerators are usu-
ally generated using static compilation, leading to a large instruc-
tion volume for different input shapes. Due to the fact that genera-
tive LLMs generate one token at a time, the token length increases
by 1 with each inference. This means that each inference process of
the LLM requires different instructions. However, due to the large
computational and storage requirements of the LLM, even with
coarse-grained instructions, the number of instructions is still enor-
mous. Taking the example of deploying the LLaMA2-7B model on
the U280 FPGA, the average volume of instructions required for the
decode stage of each inference on each SLR is approximately 2.9 MB.
For the prefill stage, the average volume of instructions required
for each inference on each SLR is about 282.1 MB. Suppose we need
to store instructions for all 3 SLRs, covering all token scenarios
for prefill and decode 1-2048, in order to handle random input and
output token quantities. In this case, the instructions would require
approximately 1.67 TB. This size already far exceeds the capacity of
U280 DDR. Unfortunately, due to sparse attention and N:M sparse
pattern, each layer and each head in the LLM has a different sparse
pattern, resulting in different instructions. Thus, it is not possible
to reuse one set of instructions for multiple layers and attention
heads. Therefore, we urgently need a method to reduce the size of
the instruction sequence, allowing for the realization of inputs and
outputs with arbitrary token lengths within limited storage.

5.2.2 Solutions. The fundamental reason for the large size of the
instruction file is to adapt arbitrary lengths of prefill and decode
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Figure 9: The overall mapping flow of FlightLLM.

stages, which requires storing instructions for all possible scenarios
in memory. To address this issue, we can reuse the same instructions
by allowing different lengths of prefill or decode. Specifically, by
setting a threshold range, token lengths within this range can share
the same instructions. For example, when the input token length
is between 1 and 16, we can reuse the instructions for 16 tokens.
Additionally, considering our N:M sparse block size (16×16) and the
size of the sparse attention block (64×64), reusing instructions in
this manner would not have a significant impact on performance.

We find that instructions are executed more frequently in the
decode stage than in the prefill stage. The bottleneck of the decode
stage lies in memory access, which is directly proportional to the
token length. Therefore, we use more refined thresholds in the
decode stage to avoid too much redundant computation. Moreover,
we can reuse the same instruction file by configuring different base
memory addresses of PEs of different SLRs through registers. The
instruction size can be reduced to 4.77 GB with these optimizations,
which the DDR of U280 can already store.

We optimize the instructions for multiple HBM channels mem-
ory access to reduce the instruction size further. For example, in
each PE, the A buffer and the global buffer are connected to 8 HBM
channels, and each HBM channel requires an LD or ST instruction
each time the data is moved between the buffer and the HBM. We
combine these similar instructions into one instruction, and the
hardware decoder decodes the single instruction into eight hard-
ware instructions. The eight hardware instructions will be launched
to eight HBM channels simultaneously, enabling the concurrent
read/write of multiple HBM channels to utilize the HBM band-
width fully. Through these optimizations, the instruction size is
reduced to 3.25 GB and stored in the DDR memory with negligible
performance loss.

5.3 Analytical Model for RTL Generation
In this section, we analyze the relationship between the theoretical
hardware resource utilization of FlightLLM on FPGA platforms and
hardware implementation. For the main computation resource on
FPGA, the usage of DSP is determined by the computing parallelism
(𝑝𝑀 ∗𝑝𝐾 ∗𝑝𝑁 ) of MPU and its amount. The theoretical usage of DSP
can be estimated as follows:𝐷𝑆𝑃 = (𝑝𝑀 ∗𝑝𝐾 ∗𝑝𝑁 ∗𝑀𝑃𝑈 )∗𝑀𝑃𝐸. As
for the on-chip buffers, their data width is designed based on the par-
allelism of the computation units. We implement activation buffer
with URAM for its larger capacity, while the remaining buffers are
implemented with BRAM36. The theoretical buffer usage are as
follows:𝑈𝑅𝐴𝑀 = (𝑝𝑀 ∗ 𝑝𝐾 ∗𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑤𝑖𝑑𝑡ℎ/𝑈𝑅𝐴𝑀_𝑤𝑖𝑑𝑡ℎ) ∗
𝑀𝑃𝑈 ∗𝑀𝑃𝐸, 𝐵𝑅𝐴𝑀 = (𝑊𝑒𝑖𝑔ℎ𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 +𝐺𝑙𝑜𝑏𝑎𝑙_𝑏𝑢𝑓 𝑓 𝑒𝑟 +
𝐼𝑛𝑑𝑒𝑥_𝑏𝑢𝑓 𝑓 𝑒𝑟 )∗𝑀𝑃𝐸. For memory bandwidth, the theoretical peak
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Alveo U280

(a) (b)
Figure 10: (a) U280 FPGAs on the server (one card is used
only). (b) FlightLLM implementation layout on U280 FPGA.

bandwidth is calculated as 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = (𝑀𝑃𝑈 /8 + 2) ∗ 𝑀𝑃𝐸 ∗
14.4𝐺𝐵/𝑠 . The RTL generator determines the deployment of hard-
ware modules of FlightLLM on a specific FPGA platform based on
these theoretical models. It aims to fully utilize on-chip resources
to improve the performance of the accelerator.

5.4 Mapping Flow
Fig. 9 shows our entire deployment flow. FlightLLM takes the
PyTorch-based LLM as input and converts it to ISA according to the
customized intermediate representation (IR). First, the original LLM
undergoes sparsification and quantization to create a compressed
LLM. Subsequently, the IR is exported, encompassing the model’s
structure, weights, sparse indexes, and attention masks, which
is achieved through automated parsing of the model’s structure.
Following that, the generated IR undergoes optimization, which
involves operations like removing the view() layers that do not
impact the data arrangement and performing layer fusion. More
specifically, the attention layer will be fused with the softmax layer,
and the linear layer will be fused with ReLU, SiLU, and element-
wise layers. Subsequently, all the data in the optimized IR will be
assigned HBM or DDR storage addresses. Additionally, the data
stored in the HBM will be partitioned into appropriate channels
to prevent inefficient access across different channels, thus lever-
aging the FPGA’s high bandwidth effectively. Lastly, the compiler
will generate instructions using the optimized IR and schedule the
on-chip buffer according to manually defined templates.

In addition, we support generating corresponding RTL for differ-
ent FPGA platforms. Specifically, the RTL Generator takes parame-
ters of different FPGA platforms (including the amount of DSP, the
capacity and bandwidth of HBM/DDR and on-chip RAM resources)
to dynamically adjust the computing parallelism and buffer size.
This is done to generate corresponding RTL code for implementa-
tion and configurations for compilation, in order to maximize the
optimal performance on different platforms.

6 EVALUATION
6.1 Evaluation Setup
Models and Datasets. We evaluate the effectiveness of FlightLLM
with state-of-the-art large language models LLaMA2-7B [41] and
OPT-6.7B [54]. We finetune the compressed model with a small
sampled subset of RedPajama dataset [11] consisting 8192 rows
with 56M tokens. The accuracy evaluation is performed on the
commonly used WikiText-103 and WikiText-2 [35] datasets.

Table 2: Hardware parameters of GPU and FPGA platforms.

GPU GPU FPGA FPGA

Platform NVIDIA
V100S(12nm)

NVIDIA
A100(7nm)

Xilinx Alveo
U280(16nm)

Xilinx Versal
VHK158(7nm)

Frequency 1245 MHz 1065 MHz 225 MHz 225 MHz

Computing
Units

640
Tensor Cores

432
Tensor Cores

9024
DSPs

7392
DSPs

Memory 32 GB 80 GB 8 & 32 GB 32 & 32 GB

Bandwidth 1134 GB/s 1935 GB/s 460 & 38 GB/s 819 & 51 GB/s

Table 3: Hardware utilization of FlightLLM on Alveo U280.

Component LUT FF BRAM URAM DSP

Buffer 42k(3.2%) 75k(2.9%) 816(40.5%) 792(82.5%) 0

Controller 162k(12.4%) 156k(6.0%) 408(20.2%) 0 0

MPE 190k(14.6%) 360k(13.8%) 0 0 6144(68.1%)

SFU 30k(2.3%) 36k(1.4%) 24(1.2%) 0 201(2.1%)

Interconnect 150k(11.5%) 316k(12.1%) 4(0.2%) 0 0

Total 574k(44.0%) 943k(36.2%) 1252(62.1%) 792(82.5%) 6345(70.2%)

Metrics.We leverage latency and throughput to evaluate the dif-
ference between FlightLLM and other baselines comprehensively.
Latency is used to measure the end-to-end time cost of the entire
inference. Throughput is used to measure the speed of the decode
stage by dividing the number of output tokens by the time of the de-
code stage. Unless otherwise noted, all results are evaluated under
the batch size of 1 to accommodate latency-sensitive scenarios.
FPGA Platforms. We use two FPGA platforms for evaluation,
including Xilinx Alveo U280 [50] and Versal VHK158 [51]. Ta-
ble 2 lists the hardware parameters of FPGA platforms. Alveo U280
FPGA is equipped with two kinds of memory: 8GB HBM with
460GB/s bandwidth and 32GB DDR with 38GB/s bandwidth. Versal
VHK158 FPGA’s HBM capacity and bandwidth are significantly
improved compared to U280, reaching 32GB and 819GB/s. We im-
plement FlightLLM on the real system with U280 FPGAs (Fig. 10(a)).
For VHK158 evaluation, we implement a cycle-accurate simulator,
which has been verified with RTL emulation using Vitis 2023.1.
FPGA Implementation. Fig. 10 shows the layout of our imple-
mentation on U280 FPGA. Since cross-die connections are more
likely to become the critical paths for timing closure, we instantiate
multiple computing cores and place them on different SLRs. For the
memory controller, we place it on SLR0 closest to the HBM for easy
reading. The implementation report shows that our kernel runs at
225 MHz, while detailed hardware utilization is listed in Table 3. We
also measure the power of FlightLLM through the vendor-provided
Xilinx Board Utility tool xbutil [3].
GPU Baselines. We choose NVIDIA A100 and V100S as our GPU
baselines, and their specifications are also listed in Table 2. We con-
duct evaluations on the selected model with huggingface PyTorch
as the GPU-naive design, vLLM [31], and SmoothQuant [49] as the
GPU-opt design. vLLM is the commonly used LLM framework with
KV cache memory optimization, and SmoothQuant is the SOTA
LLM quantization framework with INT8 CUDA kernel for both ac-
tivations and weights. We use nvprof [2] to profile the GPU power
consumption at runtime.
SOTA Accelerator Baselines. We also selected three domain-
specific accelerators targeting at accelerating attention mechanism:
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Figure 11: Latency and throughput of FlightLLM and V100S/A100 GPU. The horizontal axis represents [prefill size, decode size].

Table 4: Perplexity of LLMs under different optimization
configuration on wikitext-103 and wikitext-2 datasets.

LLM Compression wikitext-103 wikitext-2

LLaMA2-7B

None 8.7 21.2
Sparse Attention 8.1 19.0
Weight Pruning 8.3 17.8
Quantization 9.9 20.6
All 10.2 21.9

OPT-6.7B

None 11.0 10.0
Sparse Attention 11.1 10.5
Weight Pruning 11.8 11.1
Quantization 10.8 10.3
All 13.0 12.5

DFX [25], FACT [37], and CTA [44]. It has to be mentioned that
DFX is a multi-FPGA acceleration work, and we only evaluate its
hardware performance of a single card. Since there are no open-
source codes for these accelerators, and they have not supported
recent LLMs such as LLaMA2. We build C++ simulators based on
corresponding hardware designs to evaluate their performance,
achieving less than 5% deviation using their original data. For fair-
ness, we align the hardware parameters (clock frequency, peak
performance, bandwidth) for these baselines.

6.2 Evaluation Results
6.2.1 Accuracy of Compressed LLMs. FlightLLM harnesses the
power of state-of-the-art model compression methods by optimiz-
ing them to fit the distinct features of FPGA. As depicted in Table 4,
we conduct experiments around different optimization configura-
tions on LLMs. For sparsification, FlightLLM builds upon previous
work to use block sparse for sparse attention [53] andN:M sparse for
weight pruning [57]. FlightLLM uses gradient-based analysis [15]
to quantify the importance of each weight and attention value
and remove the unimportant values. For quantization, FlightLLM
builds upon previous work [49] and extends its single-precision
scheme to mix-precision. FlightLLM follows the same idea as spar-
sification and use the gradiant-based analysis to quantify weight
importance and assign three, four or five bit width accordingly.
With this scheme, FlightLLM achieves average 3.5-bit for weights
and 8-bit for activations. Note the compression methods are also
compatible with GPU, but they need the customized units of FPGA
to yield real wall-clock speedup. By using the block sparse atten-
tion, N:M weight pruning and mixed-precision quantization all
together, FlightLLM successfully compresses the original LLM with
minimum perplexity influence.

Table 5: The bandwidth utilization of different platform.
Platform V100S GPU A100 GPU U280 VHK158

Solution None Opt. None Opt. Ours Ours

BW Util. 42.5% 65.5% 28.6% 57.4% 65.9% 64.8%

6.2.2 Comparison with GPUs. We compare the end-to-end latency
of GPUs and FlightLLM. Fig. 11 shows that FlightLLM on VHK158
outperforms V100S and A100 GPU in latency on both models with
different combinations of input token size and output token size.
For OPT-6.7B/LLaMA2-7B model, FlightLLM on U280 improves the
end-to-end latency by 1.5/1.6× and 1.3/1.2× compared to V100S-
naive and V100S-opt, respectively. Table 5 shows the bandwidth
utilization of FlightLLM on FPGAs is better than A100 GPUs. This
is because FlightLLM can be customized to design hardware units,
which can fully exploit the sparsity of LLM and the memory access
optimization in the decode stage.
6.2.3 Comparison with SOTA accelerators. Fig. 12(a) shows the la-
tency of different architectures running on OPT-6.7B and LLaMA2-
7B model. It can be seen that FlightLLM achieves a general speed-up
in end-to-end latency compared to DFX, CTA and FACT. The ge-
omean latency speedups of FlightLLM on U280 and on VHK158 are
2.7× and 4.6× compared to DFX for OPT-6.7B, respectively. And
the geomean throughput speedups of FlightLLM on U280 and on
VHK158 are 2.6× and 4.6× compared to DFX. Compared to DFX,
the acceleration effects of sparse attention in CTA and FACT are
not significant, mainly because the attention computation does
not account for a high proportion under small prefill size. How-
ever, our work adopts lower bit-width quantization scheme, which
effectively alleviates the memory bottleneck in the decode stage.
Fig. 12(b) shows the geomean throughput of different architectures,
with FlightLLM achieving the highest performance. Under the same
hardware parameters, FlightLLM achieves better utilization of com-
puting resources as well as bandwidth.
6.2.4 Energy and Cost Efficiency. We consider energy efficiency as
fair metrics to compare GPU and our FPGA-based FlightLLM. Fig. 13
shows the results of energy efficiency (Token/J). FlightLLM on
U280 consistently outperforms GPUs and achieves 6.7×, 4.6×, 6.0×
and 4.2× energy efficiency compared to V100S-naive, A100-naive,
V100S-opt and A100-opt respectively for OPT-6.7B. For LLaMA2-
7B, FlightLLM on U280 achieves achieves 6.0×, 4.4×, 5.5× and 3.8×
energy efficiency. For cost efficiency (Token/s/dollor), GPU gen-
erally has higher product price compared to FPGA. The price of
V100S, A100 and Aleveo U280 are approximately 12000$, 17000$
and 8000$ respectively. Therefore, FlightLLM on U280 achieves



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Shulin Zeng and Jun Liu, et al.

4.6× 4.6×

0

1

2

3

4

5

N
o

rm
a

li
z
e

d
L

a
te

n
c

y
DFX FACT CTA Ours (U280) Ours (VHK158-est.)

OPT-6.7B LLaMA2-7B

4.6× 4.5×

0

1

2

3

4

5

N
o

rm
a

li
z
e

d
T

h
ro

u
g

h
p

u
t

OPT-6.7B LLaMA2-7B

(a)

(b)

[128,512] [128,1024] [128,1536] [512,512] [512,1024] [512,1536] Geomean [128,512] [128,1024] [128,1536] [512,512] [512,1024] [512,1536] Geomean

Acc

Figure 12: Performance of FlightLLM, DFX, CTA, and FACT. The horizontal axis represents [prefill size, decode size].
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Figure 15: The multi-batch performance on LLaMA2-7B.

1.9× and 1.5× higher geomean cost efficiency over V100S-opt and
A100-opt for OPT-6.7B, and achieves 2.3× and 1.4× higher geomean
cost efficiency over V100S-opt and A100-opt for LLaMA2-7B.
6.2.5 Performance Breakdown. Fig. 14 shows the latency break-
down of FlightLLM. We normalize the latency of the LLaMA-2 and
OPT model running on a V100S GPU. We naively implement the
LLaMA-2 model on the U280 FPGA, which has only 70% of the
performance of the V100S GPU. The gap is due to the larger peak
memory bandwidth (1134GB/s vs. 460GB/s) and higher peak per-
formance (130TOPS vs. 25TOPS) of the V100S GPU [10] compared
to the U280 FPGA. After using the flexible sparse method and the
configurable sparse DSP chain, the performance of FlightLLM is im-
proved by 1.1-1.2×, because we reduce the inference computation
and make full use of DSP resources. After further using the al-
ways on-chip decoder, the performance improvement of FlightLLM
achieves 1.6-1.7×, because we effectively reduce the overhead of
off-chip memory access.

6.2.6 Discussion. gpt-fast2 is a new SOTA Pytorch-native code-
base optimized for LLM inference, achieving 196.8 tokens/s with
INT4 quantization on the NVIDIA A100 GPU. However, the current
version of gpt-fast has no support for OPT models and multi-batch
processing. Evaluated on LLaMA2-7B, FlightLLM on the VHK158
FPGA achieves 92.5 tokens/s, and provides 2.9× better energy ef-
ficiency and higher bandwidth utilization (64.8% vs. 44.6%) than
gpt-fast on the A100 GPU.

As for the multi-batch performance, gpt-fast has no support of
multi-batch processing, so only the results of GPU-opt (i.e., vllm and
SmoothQuant) are reported. In Fig. 15, as the batch size increases,
the performance advantage of FlightLLM over GPU will gradually
decrease. The main reason is that GPUs have more hardware re-
sources (i.e., memory bandwidth and computing units with higher
frequency) than FPGAs.

7 CONCLUSION
This paper proposes FlightLLM, enabling efficient LLMs inference
with a complete mapping flow on FPGAs. In FlightLLM, we inno-
vatively point out that the computation and memory overhead of
LLMs can be solved by utilizing FPGA-specific resources. FlightLLM
demonstrates that FPGAs are promising candidates for efficient
LLM inference. FlightLLM achieves 6.0× higher energy efficiency
and 1.8× better cost efficiency against commercial GPUs (e.g., NVIDIA
V100S) on modern LLMs (e.g., LLaMA2).
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