
Leda
Rule Specifier Tutorial
Version 2006.06
June 2006

Comments?
E-mail your comments about this manual to
 leda-support@synopsys.com.

mailto:leda-support@synopsys.com

Copyright Notice and Proprietary Information
Copyright © 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CSim,
Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSPICE, Hypermodel, iN-Phase, in-Sync, Leda, MAST,
Meta, Meta-Software, ModelAccess, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PowerMill, PrimeTime, RailMill, Raphael, RapidScript, Saber, SiVL, SNUG, SolvNet, Stream Driven Simulator,
Superlog, System Compiler, Testify, TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered
trademarks of Synopsys, Inc.

Trademarks (™)
abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail,
Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit
Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE,
Cyclelink, Davinci, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design
Analyzer, Design Vision, DesignerHDL, DesignTime, DFM-Workbench, DFT Compiler, Direct RTL, Direct Silicon
Access, Discovery, DW8051, DWPCI, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO
Compiler, EDAnavigator, Encore, Encore PQ, Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker,
FoundryModel, FPGA Compiler II, FPGA Express, Frame Compiler, Galaxy, Gatran, HDL Advisor, HDL Compiler,
Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace,
HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-
Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-
3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum
Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power
Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael-NES,
RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon
Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire,
Source-Level Design, Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-
SimXT, Star-Time, Star-XP, SWIFT, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-Process,
Taurus-Topography, Taurus-Visual, Taurus-Workbench, TimeSlice, TimeTracker, Timing Annotator, TopoPlace,
TopoRoute, Trace-On-Demand, True-Hspice, TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification
Portal, VFormal, VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

June 2006 Synopsys, Inc. 3

Leda Rule Specifier Tutorial Contents

Contents

Preface . 11

About the Manual . 11
Related Documents . 11
Manual Overview . 11
Typographical and Symbol Conventions . 12

Getting Leda Help . 13
The Synopsys Web Site . 13

Chapter 1
Writing Rules for VHDL . 15

Introduction . 15
Writing Rules . 16
Creating Ruleset Files . 17
Creating Policies . 20

Using Tcl Shell Mode to Create New Policies . 20
Creating a VHDL Test File . 21
Creating a Project File . 23
Running the Checker & Fixing the Errors . 25
What is VRSL? . 30
About Templates and Attributes . 30
VRSL Rule-Writing Examples . 32

Requiring Constant Declarations in Packages . 33
Making Deferred Constant Declarations Illegal . 34
Adding HTML Help Files for Errors . 36
Requiring Synchronous Resets in Flip-Flops . 37
Ignoring Alias Declarations . 37
Adding Context to Rules . 38
Requiring that Default Port Values be Ignored . 39
Prohibiting Latches . 39
Prohibiting XNOR Binary Operators . 40
Prohibiting Expressions in Attribute Names . 40
Limiting Clocks to One Name . 41
Forcing Process Statements to be Combinatorial . 41
Using Variables to Establish Naming Conventions . 43
Using Multiple Templates . 43

4 Synopsys, Inc. June 2006

Contents Leda Rule Specifier Tutorial

Constraining Prefixes for Active-High and Active-Low Resets 44
Using Enumerated Types . 47
Prohibiting the use of Real Literals . 48
Limiting the Number of Clocks in Processes . 48
Using Duplicate Rule Labels and Messages . 50
Inheriting Templates . 50
Using Multiple Commands in One Template . 51

Chapter 2
Writing Rules for Verilog . 53

Introduction . 53
Writing Rules . 54
Creating Ruleset Files . 55
Creating Policies . 58

Using Tcl Shell Mode to Create New Policies . 58
Creating a Verilog Test File . 59
Creating a Project File . 60
Running the Checker & Fixing the Errors . 62
What is VeRSL? . 67
About Templates and Attributes . 67
VeRSL Rule-Writing Examples . 69

Requiring that Module Ports be Named by Association 70
Requiring Synchronous Resets in Flip-Flops . 72
Adding HTML Help Files for Errors . 72
Requiring Port Connections . 73
Ensuring Complete Sensitivity Lists . 74
Prohibiting Macromodules in Module Declarations . 76
Prohibiting Bidirectional Ports . 77
Prohibiting Latches . 78
Prohibiting Case Equality Operators . 79
Limiting Clocks to One Name . 80
Requiring Instance Names with “U_” . 81
Using Multiple Commands in Templates . 82
Using Variables to Ensure One Module per File . 83
Limiting Shifts to Constant Values . 84
Restricting Asynchronous Resets in Always Blocks . 85
Setting the Clock Edge . 87
Ensuring One Clock Input in Sequential Processes . 88
Specifying Max Characters for Input Port Names . 88

Advanced Rule Creation . 89

June 2006 Synopsys, Inc. 5

Leda Rule Specifier Tutorial Contents

Regular Expressions, Template-to-Template Calling, Rule Label Duplication 89
Using Multiple Templates in Commands . 91
No Variables in Loops . 92
Constraining Technology-independent Registers . 93

Index . 97

6 Synopsys, Inc. June 2006

Contents Leda Rule Specifier Tutorial

June 2006 Synopsys, Inc. 7

Leda Rule Specifier Tutorial Tables

Tables

Table 1: Documentation Conventions . 12
Table 2: constant_declaration Primary Template Description 35
Table 3: module_instantiation Primary Template Description 71

8 Synopsys, Inc. June 2006

Tables Leda Rule Specifier Tutorial

June 2006 Synopsys, Inc. 9

Leda Rule Specifier Tutorial Figures

Figures

Figure 1: Specifier Main Window . 16
Figure 2: Specifier Project After Build . 24
Figure 3: Rule Wizard with Custom Rules Displayed . 26
Figure 4: Checker Results for Custom Rules . 27
Figure 5: Specifier Main Window . 54
Figure 6: Specifier Project After Build . 61
Figure 7: Rule Wizard with Custom Rules Displayed . 63
Figure 8: Checker Results for Custom Rules . 64

10 Synopsys, Inc. June 2006

Figures Leda Rule Specifier Tutorial

June 2006 Synopsys, Inc. 11

Leda Rule Specifier Tutorial Preface

Preface

About the Manual
This tutorial is an example-based introduction to using Leda to check your VHDL or
Verilog code for errors or anomalies that may cause problems downstream in your
design and verification flow.

This tutorial is intended for use by design and quality assurance engineers who are
already familiar with VHDL or Verilog.

Related Documents
This manual is part of the Leda documentation set. For a complete list, see the Leda
Document Navigator.

Manual Overview
This manual contains the following chapters:

Preface Describes the manual and explains how to get technical
assistance.

Chapter 1
Writing Rules for VHDL

An example-based tutorial for users who want to learn
how to use Leda to specify coding rules and verify that
their VHDL designs comply with those rules.
Includes a hands-on introduction to the VRSL language
that you use to specify coding rules for VHDL designs.

Chapter 2
Writing Rules for Verilog

An example-based tutorial for users who want to learn
how to use Leda to specify coding rules and verify that
their Verilog designs comply with those rules.
Includes a hands-on introduction to the VeRSL language
that you use to specify coding rules for Verilog designs.

12 Synopsys, Inc. June 2006

Preface Leda Rule Specifier Tutorial

Typographical and Symbol Conventions
The following conventions are used throughout this document:

Table 1: Documentation Conventions

Convention Description and Example

% Represents the UNIX prompt.

Bold User input (text entered by the user).
% cd $LMC_HOME/hdl

Monospace System-generated text (prompts, messages, files, reports).
No Mismatches: 66 Vectors processed: 66 Possible"

Italic or Italic Variables for which you supply a specific value. As a command
line example:
% setenv LMC_HOME prod_dir

In body text:
In the previous example, prod_dir is the directory where your
product must be installed.

| (Vertical rule) Choice among alternatives, as in the following syntax example:
-effort_level low | medium | high

[] (Square brackets) Enclose optional parameters:
pin1 [pin2 ... pinN]

In this example, you must enter at least one pin name (pin1), but
others are optional ([pin2 … pinN]).

TopMenu > SubMenu Pulldown menu paths, such as:
File > Save As …

June 2006 Synopsys, Inc. 13

Leda Rule Specifier Tutorial Preface

Getting Leda Help
For help with Leda, send a detailed explanation of the problem, including contact
information, to leda-support@synopsys.com.

The Synopsys Web Site
General information about Synopsys and its products is available at this URL:

http://www.synopsys.com

mailto:leda-support@synopsys.com
http://www.synopsys.com

14 Synopsys, Inc. June 2006

Preface Leda Rule Specifier Tutorial

June 2006 Synopsys, Inc. 15

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

1
Writing Rules for VHDL

Introduction
Welcome to the Leda Rule Specifier Tutorial, an example-based introduction to learning
how to write coding rules for use with Leda. You use these coding rules to check your
VHDL designs for errors or anomalies that may cause problems for downstream tools in
the design and verification flow. For general information about Leda, see the Leda User
Guide.

You need an optional Specifier license in order to perform the exercises in this tutorial.
The tutorial is divided into two parts. Part one takes you through the process of writing
some sample rules and organizing them so that you can check some test VHDL code
using Leda, and later fix the problems right from the tool. This part of the tutorial is
organized in the following major sections:

• “Writing Rules” on page 16

• “Creating Ruleset Files” on page 17

• “Creating Policies” on page 20

• “Creating a VHDL Test File” on page 21

• “Creating a Project File” on page 23

• “Running the Checker & Fixing the Errors” on page 25

Part two explores the syntax and semantics of VRSL, the VHDL rule-writing language.
Hands-on examples are provided there to give you a feel for all of the VRSL commands
and capabilities. This part of the tutorial is organized in the following sections:

• “What is VRSL?” on page 30

• “About Templates and Attributes” on page 30

• “VRSL Rule-Writing Examples” on page 32

16 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

Writing Rules
In this exercise we’ll create four new rules in the VHDL rule specification language
(VRSL) and organize them into two different rulesets that reside in one ruleset.rl file.
Then we’ll write some VHDL code, which the rules will check. Finally, we’ll use the
rules we created to check our sample VHDL code. Note that for this first exercise, we’ll
create some relatively simple rules so that you can get a feel for rule creation,
compilation, checking, and debugging. After you master this flow, you can proceed to
the second part of this tutorial to learn how to use all of the VRSL commands to develop
more complicated or sophisticated rules.

If you haven’t already done so, install the Leda software and configure your
environment as described in the Leda Installation Guide. Then, begin by invoking the
Specifier tool as follows:

% $LEDA_PATH/bin/leda -specifier &

The Specifier main window (Figure 1) opens:

Figure 1: Specifier Main Window

June 2006 Synopsys, Inc. 17

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Creating Ruleset Files
Suppose we need four new rules that:

• Make sure latches are not used in the design

• Catch missing or redundant signals in sensitivity lists

• Make sure that clocks are named “clock” or end in “_clk”

• Catch cases where clocks are mixed with different clock edges

For the sake of this exercise, let’s assume that we were unable to find rules to handle
these needs in any of the prepackaged rules that come built-in with the Leda Checker.
(In fact, there are rules similar to these that you can copy and modify.) To begin, follow
these steps:

1. Using a text editor, type in the following VRSL source code exactly as shown. You
can use the text editor in the Specifier by choosing File > New. (Note that two
dashes “--” at the beginning of a line designate a comment.) Create the file as
“ruleset.rl”. Note that “.rl” is the standard extension for VHDL ruleset files.

Hint
For your convenience, you can find the following example VRSL code in
the $LEDA_PATH/doc/tutorial_specifier/rsl/ruleset.rl file. If you are
viewing this document online, you can also cut-and-paste the text right from
this PDF file.

--
-- VHDL rules
--
-- In this file we create 2 rulesets, with 2 rules in each:
-- TUTOR_RS
-- TUT_1 Avoid using latches in design
-- TUT_2 Missing or redundant signals in sensitivity list
-- TUTOR_CLOCK
-- TUT_3 Clock name must end with _clk or be clock
-- TUT_4 Avoid mixing clock with different clock edge
--
-- Rules were copy/pasted and adapted from existing Leda rules found
-- in the RMM coding guidelines policy.
-- The source of this policy for VHDL is in $LEDA_PATH/rules/rmm/
-- RMM.rl
-- For each rule, you must copy the "command" part of the rule
-- as well as the "template" part.
--

18 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

ruleset TUTOR_RS is

--
-- Command section
--
-- Rule TUT_1
-- Avoid using latches in design
-- Copied from rule R_552_1 in $LEDA_PATH/rules/rmm/RMM.rl
-- Here, we just changed the label from R_552_1 to TUT_1
-- and commented out the link to an html document

TUT_1:
no latch
 message "Avoid using latches in design"
-- html_document "pol_rmm.html#R_552_1"
 severity ERROR

--
-- Rule TUT_2
-- Missing or redundant signals in sensitivity list
-- Copied from rule R_554_1 in $LEDA_PATH/rules/rmm/RMM.rl

TUT_2:
force complete_sensitivity in process_statement
 message "Missing or redundant signals in sensitivity list"
-- html_document "pol_rmm.html#R_554_1"
 severity ERROR

end ruleset

------------ end of ruleset TUTOR_RS. ------

ruleset TUTOR_CLOCK is

--
-- Template section
--
-- Template for use with rule TUT_3 below
-- Copied from the template used by G_521_6
-- Here we changed the regular expressions to
-- reflect our own new naming convention
template CLOCK_NAME is clock
limit cased_identifier to "_clk$", "clock"
end

June 2006 Synopsys, Inc. 19

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

--
-- Command section
--
-- Rule TUT_3
-- Clock name must end with _clk or be clock
-- Adapted from rule G_521_6 in $LEDA_PATH/rules/rmm/RMM.rl
-- We changed the message, and the regular expressions
-- used in the template CLOCK_NAME

TUT_3:
limit clock to CLOCK_NAME
 message "Clock name must end with _clk or be clock"
-- html_document "pol_rmm.html#G_521_6"
 severity WARNING

--
-- Rule TUT_4
-- Avoid mixing clock with different clock edge
-- Adapted from rule G_541_1 in $LEDA_PATH/rules/rmm/RMM.rl
-- We changed the message

TUT_4:
no mixed_clock in design
 message "Avoid mixing clock with different clock edge"
-- html_document "pol_rmm.html#G_541_1"
 severity WARNING

end ruleset

20 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

Creating Policies
Now that we have a ruleset.rl file that contains our new rule source code, we need to
store the new rules in a policy. To do that, follow these steps:

1. From the Specifier main window, first open the Rule Wizard (Check > Configure),
and from there open the Policy Manager window (Tool > Policy Manager).

2. Click the VHDL tab, and then click the New button on the right side of the display.
Type in a name for the new policy (for example, “MY_TUTOR”) and click OK.

3. When your new policy name appears in the Policies pane, click it to highlight the
name and then click in the Rulesets pane. Click the Add button. This opens the
“Please choose a rule file” window.

4. Navigate to the location of the ruleset.rl file you just created and click on the file
name. Then click the Add button. This causes the tool to compile your new rulesets.
You should see messages in the Log tab at the bottom of the Specifier main window
similar to the following:

Compiling ruleset TUTOR_RS
Compiling ruleset TUTOR_CLOCK
Compilation done (block level).
Compilation done (chip level).

The Rulesets pane in the Policy Manager window now shows the two rulesets we
created (TUTOR_CLOCK and TUTOR_RS), and the Templatesets pane shows the
templatesets we used.

5. Close the Policy Manager window.

You have now created a policy (“MY_TUTOR”) containing two rulesets that are
both in the same ruleset.rl file. The rulesets contain a total of four rules (two rules
each), which we’ll use to check some sample VHDL code.

Using Tcl Shell Mode to Create New Policies
You can also create new policies and rulesets using the rule_manage_policy command
in Leda’s Tcl shell mode. For example, to create the “MY_TUTOR” policy, use the
following command at the Tcl shell prompt:

leda> rule_manage_policy -policy MY_TUTOR create

Then, to compile the ruleset.rl file you created for this tutorial, use the following
command at the Tcl shell prompt:

leda> rule_manage_policy -policy MY_TUTOR compile ruleset.rl

For more information on using Tcl shell mode, see the Leda User Guide.

June 2006 Synopsys, Inc. 21

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Creating a VHDL Test File
To test these rules, we need to create some VHDL code to check them against. We are
going to purposely violate all four rules we created in our VHDL code so that we can see
how the tool works. When we check the code with our new rules, we should see errors
for all of them. Follow these steps:

1. Using a text editor, type in the following text, and save the file as test.vhd.
- Simple testcase for the rules in the VHDL policy built with
-- ruleset.rl file
-- Will fire the rules:
-- TUT_1 Avoid using latches in design
-- TUT_2 Missing or redundant signals in sensitivity list
-- TUT_3 Clock name must end with _clk or be clock
-- TUT_4 Avoid mixing clock with different clock edge

library IEEE;
use IEEE.std_logic_1164.all;
entity test_ent is
 port(data, clk, main_clk, clock, rst, load_clk :in std_logic;
 q, q1, q2, q3: out std_logic);
end;

architecture rtl of test_ent is
begin

P_1: process(clock)
 begin
 if (rst = '1') then
-- TUT_2 fires: rst is not in sensitivity list
 q <= '0';
 elsif (clock'event and clock = '1') then
 q <= data;
 end if;
 end process;

P_2: process(clk)
 begin
 if (clk'event and clk = '1') then
-- TUT_3 fires: bad naming for a clock
 if (rst = '1') then
 q1 <= '0';
 else
 q1 <= data;
 end if;
 end if;
 end process;

22 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

P_3: process(main_clk)
-- TUT_4 fires: we mixed clock with different edges
 begin
 if (main_clk'event and main_clk = '0') then
 if (rst = '1') then
 q2 <= '0';
 else
 q2 <= data;
 end if;
 end if;
 end process;

P_4: process(load_clk, data)
 begin
 if (load_clk = '1') then
 q3 <= data; -- TUT_1 fires: we infer a latch here
 end if;
 end process;
end rtl;

June 2006 Synopsys, Inc. 23

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Creating a Project File
Before we can use Leda to test our new rule against the sample VHDL file we created,
we must first create a project file. A project file organizes our VHDL files into easily
managed units. Follow these steps:

1. From the Specifier main window, choose Project > New. This opens the Project
Creation Wizard window.

2. Click the Specify Project Name button. This opens the Specify Project Name
window. Use the Browse button to navigate to the location where you want your
project file to reside (for example, “WORK”) and enter the project name (for
example “my_project”). Then click Save.

3. Now click the Next button at the bottom right of the window. This takes you to the
Specify Compiler Options part of the Wizard, which has tabs for VHDL and
Verilog. Click the Verilog tab.

4. In the Severity Level pane, click the radio button for the lowest severity level for
which error messages from the VHDL analyzer compiler will be printed. Analyzer
messages with a severity below the specified value are not printed. (This severity
level is only used for VHDL syntax analysis, not for checking.) The default is
Warning.

5. In the Version pane, click the 87 or 93 or radio button, depending on the version of
VHDL you are using. The default is VHDL 93.

6. Click Next. This takes you to the Specify Libraries part of the Wizard, which has
tabs for VHDL and Verilog. Click the VHDL tab.

7. In the Working Libraries pane, specify the logical names of working libraries where
the VHDL analyzer will store binary results of the VHDL analysis. For this
exercise, we are not using any specific working libraries, so we'll leave this pane
empty and let the tool put our analyzed code into the default location.

8. In the Library Directories pane, specify the path to any directories to be searched for
included files in your design. For this test, we don’t have any include files, so leave
this pane empty.

9. In the Library Files pane, specify the logical names and mappings to the physical
locations of additional existing compiled resource libraries. These are golden
libraries that can be shared by multiple projects and users and usually contain
common packages. (By default, the standard IEEE, STD, and Synopsys libraries are
available.) For this exercise, we can use the default resource libraries, so just click
Next to accept the defaults.

24 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

10. This takes you to the Specify Source Files part of the Wizard, which has tabs for
VHDL, Verilog, and All. (The All tab is for mixed-language designs.) Source files,
in this case, means VHDL source files, the ones we want to check against our new
rules. Click the VHDL tab.

11. In the Directories/Files pane, click the Add button. This opens the Add VHDL
Source Directory window. Navigate to the directory that contains the test.vhd file
you just created to test the new rules. Then click Next.

12. This takes you to the Confirm & Create part of the Wizard. Leave the Build with
Check checkbox selected and click Finish. If the tool displays a small Get Top
Module/Design Entity window, note that this information is needed for checking
chip-level rules. For this exercise, leave these settings at their default values and
click the OK button. Leda compiles the VHDL file and executes the Checker. You
should see something like the following screen (Figure 2).

Figure 2: Specifier Project After Build

Note the test.vhd file in the Source Files pane on the left-hand side of the main window.
This is the test file that we wrote earlier to check against the rules we created. But look
at all the errors and warnings listed in the Error Viewer pane on the right-hand side of
the main window. How many rules can you violate with one simple test file? As it turns

June 2006 Synopsys, Inc. 25

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

out, quite a few, but we can narrow the display to focus the results to just the new rules
we created for this tutorial, as explained in the next section, Running the Checker &
Fixing the Errors.

Running the Checker & Fixing the Errors
With the project built, we will now set up and run the Checker, which will check our
sample VHDL code against just the new coding rules we created. Follow these steps:

1. From the Specifier main menu, choose Check > Configure. This opens the Leda
Rule Wizard window, which lists all the prepackaged policies that come with the
tool on the left side of the window, in addition to the new policy we just created for
this exercise (MY_TUTOR). Some of the prepackaged policies are activated by
default. That’s why we got so many error and warning messages from the one
simple test.vhd file that we wrote for this tutorial. As you learn how to use Leda to
check your HDL code, don’t let the number of warning and error messages you
receive throw you off. In many cases, changing one line of code eliminates lots of
error messages all at once. And you can easily turn off rules that you don’t consider
to be significant for your design (see the section on Deactivating Rules in the Leda
User Guide).

2. For now, deactivate all policies except “MY_TUTOR” by clicking the icons next to
each policy name until the boxes appear empty. When you are done, only the
MY_TUTOR box icon should be filled in and colored light blue to indicate only the
new rules that we wrote are now selected for checking.

3. Open the MY_TUTOR display by clicking the (+) icon so that we can get a look at
the rules we created and how they are organized. Click on the colored box icons to
the left of the TUTOR_CLOCK and TUTOR_RS rulesets one at a time. Note how

26 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

the upper-right side of the window changes to display the rule labels and messages
for each of those rulesets. The display should look similar to the following (see
Figure 3).

Figure 3: Rule Wizard with Custom Rules Displayed

June 2006 Synopsys, Inc. 27

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

4. From the Rule Wizard menu, choose Config > Save. This activates your new rule
configuration for the Checker. Then choose Config > Close to dismiss the Rule
Wizard.

5. From the Specifier main menu, choose Check > Execute. This time we see our
same test file (test.vhd) listed in the Files tab on the left, but in the Error Viewer we
see just four messages. They are the messages generated because the test file we
wrote violates all four rules that we specified in MY_TUTOR custom policy (see
Figure 4).

Figure 4: Checker Results for Custom Rules

6. For each warning or error message in the Error Viewer, click the (+) box icon to the
left of the message. This expands the display to show the name of the test.vhd file
that we tested. Click the next (+) box icon in the hierarchy. The display opens a
window right on the VHDL file that was tested, with the offending line of code
indicated by a green arrow pointer.

28 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

7. For each warning or error message, double click in the source code display in the
Error Viewer. This opens a text editor on the file. The suspect code is already
highlighted in the file. Correct the problems as shown in the following VHDL code,
which is commented to show where the problems are and how you can fix them.

Hint
For your convenience, you can find a copy of this corrected test code at
$LEDA_PATH/doc/tutorial_specifier/hdl/test_fixed.vhd.

-- Simple testcase for the rules in the VHDL policy built with
-- ruleset.rl file
-- Show the corrections (just for demo purpose)
-- to avoid the firing of the rules:
-- TUT_1 Avoid using latches in design
-- TUT_2 Missing or redundant signals in sensitivity list
-- TUT_3 Clock name must end with _clk or be clock
-- TUT_4 Avoid mixing clock with different clock edge

library IEEE;
use IEEE.std_logic_1164.all;

entity test_ent is
 port(data, clk, main_clk, clock, rst, load_clk :in std_logic;
 q, q1, q2, q3: out std_logic);
end;

architecture rtl of test_ent is
begin

--P_1: process(clock)
P_1: process(clock, rst)
 begin
 if (rst = '1') then
-- TUT_2 fires if rst is not in sensitivity list
 q <= '0';
 elsif (clock'event and clock = '1') then
 q <= data;
 end if;
 end process;

June 2006 Synopsys, Inc. 29

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

--P_2: process(clk) -- TUT_3 fires: bad naming for a clock
P_2: process(clock)
 begin
-- if (clk'event and clk = '1') then
-- TUT_3 fires: bad naming for a clock
 if (clock'event and clock = '1') then
-- We just change to a "good" name for demonstration
 if (rst = '1') then
 q1 <= '0';
 else
 q1 <= data;
 end if;
 end if;
 end process;

P_3: process(main_clk)
 begin
 -- if (main_clk'event and main_clk = '0') then

-- TUT_4 will fire if we mix clock edges
 if (main_clk'event and main_clk = '1') then l

-- Will prevent TUT_4 from firing, but it may not be
-- functionally correct...

 if (rst = '1') then
 q2 <= '0';
 else
 q2 <= data;
 end if;
 end if;
 end process;

P_4: process(load_clk, data)
 begin
 if (load_clk = '1') then
 q3 <= data;
-- Without the else clause TUT_1 fires: we infer a latch here
 else
 q3 <= '0';
-- The else clause prevents the inference of a latch
 end if;
 end process;

end rtl;

8. When you are done fixing each problem, choose File > Save from the editor’s menu
to save your changes.

9. From the Specifier main window, choose Project > Build. The tool recompiles your
test file.

30 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

10. From the Specifier main window, choose Check > Run. The tool checks your
corrected VHDL code using the rules you created. This time, since we corrected the
offending code, our results come up clean, with no error messages listed in the Error
Viewer.

This concludes our first exercise with the Leda Specifier tool. As a further exercise,
copy some of your design team’s VHDL files and try running some or all of the
prepackaged policies against them to see what kind of results you get. Notice how even
simple changes in your VHDL coding eliminate lots of error messages. This can help
avoid downstream bottlenecks in your design and verification flow.

Now that we have the mechanics down for building and checking rules using Leda, let’s
explore the syntax and semantics of the VRSL rule specification language itself,
beginning with the first section in part two of this tutorial: What is VRSL?

What is VRSL?
VRSL is a macro-based language that you use to write rules that check VHDL code for
errors or anomalies. You write coding rules using prebuilt templates and attributes, and a
simple set of commands. There are six VRSL commands: force, no, limit, set, max, and
min. Each command has a precise syntax with allowed keywords. For complete
reference information on VRSL commands, templates, and attributes, see the VRSL
Reference Guide.

All terminology used for writing rules comes from either the IEEE Standard 1076-1993
VHDL Language Reference Manual (LRM) or the VRSL Reference Guide. The LRM is
the basis upon which the VRSL Reference Guide was created. While a few of the terms
used in this tutorial are unique to Leda, most of them can be found in the LRM. A
review of the LRM and its terminology can help you gain a better understanding of
VRSL.

About Templates and Attributes
Before we get started writing more interesting custom rules, let’s take a closer look at
templates and attributes, because these are the building blocks that you combine with
VRSL commands to write rules.

A template defines a model of how the VHDL code should appear. Templates are basic
elements of VRSL code that you use to build rules or even other templates. Templates
are all prepackaged (VRSL primary template or VRSL secondary template). You can
assign any string to be (template my_template is template) where template is one of the
prepackaged templates and define its focus using VRSL commands, but you cannot
create new templates or attributes yourself.

June 2006 Synopsys, Inc. 31

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Each template has a set of attributes or characteristics of VHDL code that you can use
with it. When you define a template to model the VHDL code you want to constrain,
you select one or more attributes from this set and use VRSL commands like force, no,
or limit to precisely define that model or template. Then you write a rule that calls that
template and constrains the code that the template matches.

When you write a rule with a primary template, you don’t need to provide a context.
Primary templates are stronger than secondary templates in this way. For example, you
can write a rule with the limit command and a primary template, such as
module_declaration like this:

limit module_declaration to your_constraint

On the other hand, when you write a rule with a secondary template, you need to provide
a context. Secondary templates are not as strong as primary templates in this way. For
example, you can write a rule with the limit command and a secondary template such as
identifier like this:

limit identifier in module_declaration to your_constraint

In this example, the module_declaration primary template provides the necessary
context for the identifier secondary template.

Note
Each template in the VRSL rule specification language is either primary or
secondary. They are all clearly labelled in the VRSL Reference Guide, which
provides complete reference information for all templates and attributes,
including the attribute name, kind, and limit_kind.

When you write rules, first you define a template, and then you call that template to
complete the rule using VRSL commands.

32 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

VRSL Rule-Writing Examples
The remainder of this tutorial provides examples of how to write rules that check for
common issues of concern in HDL designs. Most of the examples are designed to give
you an introduction to the basics of rule writing using the different VRSL commands.
Other examples show you how to use different features of the language such as
enumerated types, variables, and template inheritance, so that you can see how each one
works. The examples are presented in the following sections:

• “Requiring Constant Declarations in Packages” on page 33

• “Making Deferred Constant Declarations Illegal” on page 34

• “Adding HTML Help Files for Errors” on page 36

• “Requiring Synchronous Resets in Flip-Flops” on page 37

• “Ignoring Alias Declarations” on page 37

• “Adding Context to Rules” on page 38

• “Requiring that Default Port Values be Ignored” on page 39

• “Prohibiting Latches” on page 39

• “Prohibiting XNOR Binary Operators” on page 40

• “Prohibiting Expressions in Attribute Names” on page 40

• “Limiting Clocks to One Name” on page 41

• “Forcing Process Statements to be Combinatorial” on page 41

• “Using Variables to Establish Naming Conventions” on page 43

• “Using Multiple Templates” on page 43

• “Constraining Prefixes for Active-High and Active-Low Resets” on page 44

• “Using Enumerated Types” on page 47

• “Prohibiting the use of Real Literals” on page 48

• “Limiting the Number of Clocks in Processes” on page 48

• “Using Duplicate Rule Labels and Messages” on page 50

• “Inheriting Templates” on page 50

• “Using Multiple Commands in One Template” on page 51

June 2006 Synopsys, Inc. 33

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Hint
For your convenience, you can find VRSL source code for all the examples
in this chapter in the $LEDA_PATH/doc/tutorial_specifier/rsl directory. The
ruleset files that contain these examples are named example_1.rl. and so on,
to match the example names used in the tutorial. You can also find VHDL
source code for the tests used in these examples in the $LEDA_PATH/doc/
tutorial_specifier/hdl directory. The .vhd files are named example_1.vhd and
so on to match the examples where they are used.

Requiring Constant Declarations in Packages
For our first example, let’s write a rule requiring that constant declarations in packages
have default values. First, create a template named PKG_SIG_DECL. Note that the
name of the template is your choice, but uppercase lettering is a convention that helps
identify templates in the VRSL code.

template PKG_SIG_DECL is constant_declaration
force default
end

Example_4a:
limit constant_declaration in package_declaration to PKG_SIG_DECL
message "Constant declarations in packages must have default value"
severity ERROR

In this example, we define the string PKG_SIG_DECL to be a template of type
constant_declaration, which is a primary template. Then we limit the scope in our
template definition to force the default attribute of the constant_declaration template
to be present in the code.

In the next code segment, we write a rule that calls the PKG_SIG_DECL template we
defined, using the limit command to specify that the context for application of our rule
is package_declarations. This means that in VHDL code that matches our
PKG_SIG_DECL template, constant_declarations in package_declarations must
have default values. Otherwise, Leda flags an error.

34 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

VHDL Test Code
The following code demonstrates how to use this rule to constrain VHDL. As an
additional exercise, create both a rule and VHDL code using these examples and run the
Checker.
PACKAGE example4_pkg IS
-- Program memory:

 CONSTANT sg1 : NATURAL ; -- Rule fires because there is no default value
 CONSTANT sg2 : NATURAL := 16; -- OK, default value is 16

 CONSTANT sg3 : NATURAL ; -- Rule fires because there is no default value
 CONSTANT sg4 : NATURAL := 2* sg2; -- OK, default value is 2*sg2
END example4_pkg;

Making Deferred Constant Declarations Illegal
Suppose we want to make deferred constant declarations illegal. The following code
shows how we can use a force command to write this rule:

Example_1:
force default in constant_declaration
message "Deferred constant declarations are illegal"
severity ERROR

In this example, default is an attribute of the constant_declaration primary template.
This is a simple rule where we did not need to provide any context, because we want this
rule to apply globally to all constant_declarations.

Notice the message and severity lines in the code. The message line contains the text
that is displayed when the rule is violated. The severity line indicates the level of the
violation (note, warning, error, or fatal). If these lines of code are not present, Leda
cannot flag a rule violation, so be sure to include them.

If you look in the VRSL Reference Guide, you will see the following definition for
constant_declaration:

June 2006 Synopsys, Inc. 35

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Primary template belonging to classes: OBJECT_ITEM (see Table 2).

In Table 2, the Attribute column lists the attributes that you can use with the
constant_declaration primary template. The Kind column tells you how those
attributes can be used. If the attribute is a template kind, this means that it can be used
as a template itself with its own context when writing limit, no, and force commands.
For example, all statements and declarations are template kinds of attributes. The
template kind of attribute is flexible and powerful in this way.

If the attribute is a local kind, it can only be used with no and force commands, and
cannot function as a template.

The Limit_Kind of an attribute tells you the type of template this attribute can be
constrained to. For example, the default attribute in our example is constrained for use
only with expressions. In this example, we are making sure that all constant
declarations have a specified default value:

Example_1:
force default in constant_declaration
message "Deferred constant declarations are illegal"
severity ER

If the Limit_Kind column says N/A , this means that the attribute is not constrained to a
particular type of VHDL construct or template

Table 2: constant_declaration Primary Template Description

Attribute Kind Limit_Kind

identifier template ID

subtype_indication template subtype_indication

default template EXPRESSION

declarative_region template REGION

deferred local N/A

36 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

Adding HTML Help Files for Errors
For our second example, let’s write a rule requiring that process sensitivity lists be
complete. We’ll also include some code that specifies an HTML file that provides
additional information about errors. The following code shows how we can use a force
command to write this rule:

Example_2:
force complete_sensitivity in process_statement
message "Missing or redundant signals in sensitivity list"
severity ERROR

Users may sometimes need more explanation of a rule violation than the single-line
error message that pops up on the screen. You can provide this information by inserting
a reference to an html_document below the message line in your VRSL code, as shown
in the following example:

force complete_sensitivity in process_statement
message "Missing or redundant signals in sensitivity list"
html_document "doc_policy.html#G_5_5_5_1"
severity ERROR

Store the doc_policy.html file in the $LEDA_PATH/doc/html directory. For more
information about HTML error reporting, see the Leda User Guide.

When this rule is violated, the user can hyperlink to the specified HTML document,
where more information is available. Notice that the format includes an optional anchor
within the HTML document (#G_5_5_1_1) to the specific location of the reference.

Hint
Using the very first exercise in this tutorial, add an html_document
reference line of code and recompile. For the reference document, either
create a simple HTML document or just reference a known HTML address.

June 2006 Synopsys, Inc. 37

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Requiring Synchronous Resets in Flip-Flops
For our next example, let’s write a hardware rule requiring that synchronous resets be
present in all flip-flops. A hardware rule controls the hardware semantics of VHDL.
This means certain VHDL constructs result in specific hardware features when the
description is synthesized. The following code shows how we can use a force command
to write this rule:

Example_3:
force synchronous_reset in flipflop
message "Flip-flops with synchronous resets only"
severity ERROR

In this rule, we use a force command to make sure that all VHDL source code in our
design that matches the primary template or model flipflop is constrained by the
attribute synchronous_reset to make sure only synchronous resets are used. This is an
example that shows the flexibility or dual nature of certain attributes. The primary
template flipflop has an attribute called synchronous_reset that is a template kind of
attribute, meaning that you can also use synchronous_reset as a primary template.

Look up both the flipflp and synchronous_reset primary templates in the VRSL
Reference Guide to see how this works. Many of the attributes of the VRSL templates
can also function as templates themselves. If this is the case, the attributes are identified
in the tables that describe each VRSL template as being the template kind. Attributes
that are the local kind can only be used with no and force commands with the primary
template where they are described.

Ignoring Alias Declarations
In this example, we’ll use a no command without context. We can do this because
alias_declaration is a primary template that does not require a context. The rule
requires that alias declarations be ignored. The following code shows how we can write
this rule:

Example_5:
no alias_declaration
message "Alias declarations are ignored"
severity WARNING

38 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

Adding Context to Rules
In this next example, we’ll add context to the command. This rule requires that
process_statements be ignored in the context of entity_declarations. Note that
process_statement is a primary template that does not require a context, but we can add
one if we want. The context simply narrows the focus of the rule, in this case to
entity_declarations. The following code shows how we can write this rule:

Example_6:
no process_statement in entity_declaration
message "Process statements are ignored in entities"
severity WARNING

VHDL Test Code
The following code demonstrates the use of this rule to constrain VHDL. As an
additional exercise, create both a rule and VHDL code using these examples and run the
Checker.

--
-- ENTITY DECLARATION --
--

-- LIBRARY DEFINITIONS
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY example_6a_en IS
 GENERIC (
 width : NATURAL := 16
);
 PORT (
 clk : IN STD_LOGIC; -- clock
 reset_n : IN STD_LOGIC; -- reset, active low
 en : IN STD_LOGIC; -- enable, active high
 d : IN STD_LOGIC_VECTOR(width -1 DOWNTO 0);--data in
 q : OUT STD_LOGIC_VECTOR(width -1 DOWNTO 0)--data out
);
BEGIN
 P1: PROCESS (reset_n) -- Rule fires here

 BEGIN
 assert reset_n = '0' report "Reset active";
 END PROCESS P1;
END example_6a_en;

June 2006 Synopsys, Inc. 39

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Requiring that Default Port Values be Ignored
Now, write a rule that requires that default port values be ignored.

Hint
The context for this next rule is a primary template that can be found in the
VRSL Reference Guide.

Fill in your answer below:
no default in _______________________
message "Port default values are ignored"
severity WARNING

Solution
Example_6a:
no default in port_declaration
message "Port default values are ignored"
severity warning

Note that the port_declaration template is aptly named. All VRSL primary and
secondary templates are given meaningful names to make it easier for you to find and
use the templates that you need.

Prohibiting Latches
The use of latches is generally considered poor coding practice. We’ll use this next
example to write a rule that globally prohibits latches in VHDL code using a no
command. Since a latch is hardware, this is another example of a hardware inference
rule similar to the one we saw in Example 3:

Example_7:
no latch
message "Avoid using latches in design"
severity ERROR

In this example, we did not need to provide a context because latch is a primary
template and we want to globally prohibit latches in the design.

40 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

Prohibiting XNOR Binary Operators
This example uses a no command with a template to prohibit the use of an XNOR
binary operator:

template NO_XNOR is binary_operation
limit operator_symbol to "STD.STANDARD.XNOR"

end

Example_8:
no NO_XNOR in binary_operation
message "STD.STANDARD.XNOR operator not allowed"
severity ERROR

In the template definition, we define the string NO_XNOR to be a template of type
binary_operation and use a limit command to focus just on the attributes of type
operator_symbol that match STD.STANDARD.XNOR.

In the next code segment, we call our NO_XNOR template, which will match any
operator_symbols found in binary_operations that match STD.STANDARD.XNOR,
and use a no command to prohibit their use in that context. As an added exercise, write a
rule that prohibits the use of the XOR binary operator.

Prohibiting Expressions in Attribute Names
In this next example, we’ll use a no command to write a rule that prohibits the use of
expressions in attribute names:

template ATTR_NAME is attribute_name
no expression

end

Example_9:
limit attribute_name to ATTR_NAME
message "Expressions in attribute names are illegal"
severity ERROR

The string ATTR_NAME is a name of our choosing that we assign to be of template
type attribute_name, which is a primary template that requires no context. But we want
to focus our template just on expressions, so we use a no command to restrict the scope
of our ATTR_NAME template or model to expression, which is one of the attributes of
the attribute_name primary template.

In the next code segment, we use a limit command to make sure that all code that
matches our ATTR_NAME template or model does not contain expressions.

June 2006 Synopsys, Inc. 41

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Limiting Clocks to One Name
Suppose we want to limit all clocks in our design to one name (for example, “clk”). We
can do this with the following code:

template CLOCK_WITH_ID is clock
limit identifier to "^clk"

end

Example_10:
limit clock to CLOCK_WITH_ID
message "A clock signal should be called 'clk'"
severity ERROR

First, we define the CLOCK_WITH_ID string be a template of type clock, which is a
primary template that requires no context. But we want our template or model to find
just identifier, which is one of the attributes of the clock template. So we use a limit
command in the template definition to narrow the focus to identifier, and specify the
string (“clk”) that we want to restrict clock names to.

In the next code segment, we use a limit command in the rule definition to make sure all
code in our design that matches our CLOCK_WITH_ID template or model is limited to
the name that we specified (“clk”).

Note that the template definition alone would not do the job. First you define a template
using the templates and attributes that are available, and then you write the rule that uses
your template definition. Templates are flexible in this way. You can use templates along
with VRSL commands like limit to write very specific rules with the general-purpose
templates or models of VHDL code.

Forcing Process Statements to be Combinatorial
In this example, we’ll use a limit command to write a rule that forces process statements
to be combinatorial. The following code shows how we can write this rule:

template PSS_COMBINATIONAL is process_statement
force combinatorial

end

Example_11:
limit process_statement to PSS_COMBINATIONAL
message "Only combinatorial process statements allowed"
severity WARNING

First, we define the string PSS_COMBINATIONAL to be a template of type
process_statement, which is a primary template that requires no context. But we want
our template or model to find just combinatorial, which is one of the attributes of the

42 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

process_statement template. Since we want to make sure all process statements use
combinatorial processes, we use the force command in our template definition to
provide a context and narrow the focus just to that.

The next code segment is our rule definition. We use a limit command to make sure that
all process_statements in our design that match our PSS_COMBINATIONAL
template have only combinatorial logic.

VHDL Test Code
The following code demonstrates the use of this rule to constrain VHDL. As an
additional exercise, create both a rule and VHDL code using these examples and run the
Checker.

library IEEE;
use IEEE.std_logic_1164.all;

entity example_11_en is

port (clk : in std_logic;
data_in : in std_logic_vector(63 downto 0);
data_out : out std_logic_vector(63 downto 0)
);

end example_11_en;

architecture RTL of example_11_en is

signal ff_in : std_logic;
signal ff_out : std_logic;
signal comb : std_logic;

begin

Data_input: process -- Rule fires here
begin

wait until clk'event and clk = '1';
ff_in <= data_in(55);

end process Data_input;

comb <= not ff_in;

Data_output : process -- Rule fires here
begin

wait until clk'event and clk = '0';
ff_out <= comb;

end process Data_output;

data_out(63) <= ff_out;
data_out(62 downto 0) <= (others => '0');
end RTL;

June 2006 Synopsys, Inc. 43

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Using Variables to Establish Naming Conventions
In this next exercise, we use a VRSL variable (<entity>) and a limit command to write
a rule requiring that entities be named according to a particular format:

Example_12:
limit file_name in entity_declaration to "<entity>.vhd"
message "Entities should be limited to files named <entity_name>.vhd"
severity WARNING

Notice the use of the <entity> variable with this limit command. You can use UNIX
regular expressions like this in VRSL for naming conventions, in particular. In the above
example, Leda replaces the <entity> variable in the regular expression <entity>.vhd
with the name of the enclosing entity. So, a file name of foo.vhd in the entity declaration
would cause this rule to fire the Checker, unless the entity itself was named foo. For
more information on using UNIX regular expressions and variables in VRSL rules, see
the VRSL Reference Guide.

VHDL Test Code
The following code demonstrates the use of this rule to constrain VHDL. As an additional
exercise, create both a rule and VHDL code using these examples and run the Checker.

library IEEE;
use IEEE.std_logic_1164.all;

entity example_12_en is

port (clk : in std_logic;
clk1 : in std_logic;
data_in : in std_logic_vector(63 downto 0);
data_out : out std_logic_vector(63 downto 0)
);

end example_12_en;

Using Multiple Templates
In this next exercise, we want to prohibit the use of literals in signal assignment
statements. This will require five templates, as shown in the following example:

template LOGIC_1 is literal
limit value to "1"
set value_type to enumerated_literal_type

end

template LOGIC_0 is literal
limit value to "0"
set value_type to enumerated_literal_type

end

44 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

template LOGIC_Z is literal
limit value to "Z"
set value_type to enumerated_literal_type

end

template INTEGER_0 is literal
limit value to 0
set value_type to integer_literal_type

end

template INTEGER_1 is literal
limit value to 1
set value_type to integer_literal_type

end

Example_13:
limit literal in signal_assignment_statement to LOGIC_1,

 LOGIC_0,
 INTEGER_0,

 INTEGER_1
message "No literals in signal assign. statements-- use constants"
severity WARNING

Notice how all the templates are called from a single limit command.

Constraining Prefixes for Active-High and Active-Low
Resets

Suppose we want to constrain the prefixes for active-high and active-low resets. Again,
we’ll need multiple templates (in this case four), and we’ll need to use some conditional
logic with limit commands, which are the only VRSL commands that can use
conditional statements. To write this rule, we first develop four templates that define the
following:

• high asynchronous reset edges

• high asynchronous names

• low asynchronous reset edges

• low asynchronous names

We then test for the conditions defined in the templates and if met, the rule is
implemented with the appropriate limit command.

June 2006 Synopsys, Inc. 45

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

First, let’s set up the templates. We know we need at least two templates for this rule,
since we are dealing with active-high and active-low resets. We can outline the basic
template structure as follows:

template (high asynch reset) is A
VRSL command

end

template (low asynch reset) is A
VRSL command

end

Actually, we’ll need four templates to get the job done. Try the following exercise
before you see how the template code is written.

Since four templates are needed, we know that each reset (high or low) will have two
templates. For each reset, we need to define the edge type and naming convention.
Sketch out the four templates using the VRSL Reference Guide as a reference.

Hint
Substitute asynchronous_reset for A in the code above.

If you did the exercise, hopefully you got something similar to the following for the
templates:

template HIGH_ASYNCH_RESET is asynchronous_reset
set edge to High_Level

end

template HIGH_ASYNCH_RESET_NAME is asynchronous_reset
limit identifier to "^rst","^rst$"

end

template LOW_ASYNCH_RESET is asynchronous_reset
set edge to Low_Level

end

template LOW_ASYNCH_RESET_NAME is asynchronous_reset
limit identifier to "^rst_n$"

end

Now, let’s finish up the rule. We need conditional limit commands to test for conditions
and implement rules.

46 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

The overall structure of the code should look like the following. Note that the templates
are symbolic for instructional purposes.

template xyz-high1 is A
template xyz-high2 is A
template xyz-low1 is A
template xyz-low2 is A

limit A to (xyz-high1, xyz-low1) severity NOTE

if (xyz-high1) then
limit A to (xyz-high2)
message "message text goes here"
severity ERROR

end if

if (xyz-low1) then
limit A to (xyz-low2)
message "message text goes here"
severity ERROR

end if

The difficulty now is determining A. If you did the previous exercise, you know that A
for the templates and the limit commands is asynchronous_reset. Filling in the VRSL
commands is now all we have left to complete the code.

When we put everything together, the complete code looks like the following:
template HIGH_ASYNCH_RESET is asynchronous_reset

set edge to High_Level
end

template HIGH_ASYNCH_RESET_NAME is asynchronous_reset
limit identifier to "^rst","^rst$"

end

template LOW_ASYNCH_RESET is asynchronous_reset
set edge to Low_Level

end

template LOW_ASYNCH_RESET_NAME is asynchronous_reset
limit identifier to "^rst_n$"

end

template PSS_WITH_HIGH_ASYNCH_RESET is process_statement
 force asynchronous_reset
 limit asynchronous_reset to HIGH_ASYNCH_RESET
end

template PSS_WITH_LOW_ASYNCH_RESET is process_statement

June 2006 Synopsys, Inc. 47

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

 force asynchronous_reset
 limit asynchronous_reset to LOW_ASYNCH_RESET
end

-- Command section

-- Use ^rst for active high reset signals, rst_n for active low

limit process_statement to PSS_WITH_HIGH_ASYNCH_RESET,
PSS_WITH_LOW_ASYNCH_RESET
 severity NOTE

 if PSS_WITH_HIGH_ASYNCH_RESET then
 Example_14:
 limit asynchronous_reset to HIGH_ASYNCH_RESET_NAME
 message "Active high resets should be prefixed with rst"
 severity WARNING
 end if

 if PSS_WITH_LOW_ASYNCH_RESET then
 Example_14:
 limit asynchronous_reset to LOW_ASYNCH_RESET_NAME
 message "Active low resets should be called rst_n"

severity WARNING
 end if

end ruleset

When you review this example, pay particular attention to the overall structure of the
code. Conditional limit commands are one of the most powerful tools in VRSL.

Using Enumerated Types
To set an attribute to a value using an enumerated type, we’ll need to use a set
command. Suppose we want to make sure that “for” loops have globally static bounds.
The following code shows how we can use a set command to write this rule:

Example_15:
set evaluation_time in for_loop_statement to Globally_Static_Evaluation
message "For loops must have globally static bounds"
severity ERROR

Note that some attributes have a precise meaning that is represented by an enumerated
type or a string such as Globally_Static_Evaluation. For example, the
evaluation_time attribute of the for_loop_statement primary template in this example
indicates that the expression should be globally static (available to the whole design and

48 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

not changing) as opposed to locally static (available only to the enclosing process and
not changing). This is done through the built-in enumerated type
Globally_Static_Evaluation. This feature only works with set commands.

Prohibiting the use of Real Literals
If we want to do something like prohibiting the use of real literals, we’ll again have to
use a set command, as shown in the following example:

template BAD_LIT is literal
set value_type to real_literal_type

end

Example_16:
no BAD_LIT in literal
message "Real literals are not allowed"
severity ERROR

In this example, we assign the string BAD_LIT to be a template of type literal, which is
a primary template. Then we focus our template just on value types using the
value_type attribute of the literal template and a set command to set this attribute to
real_literal_type.

In the next code segment, we use a no command to prohibit literals in VHDL code that
matches our BAD_LIT template.

Limiting the Number of Clocks in Processes
Suppose we want to limit the number of clocks in processes to one. We can accomplish
this using a max command, as shown in the following example:

Example_17:
max clock_expression_count in process_statement is 1
message "Only one clock expression per process is allowed"
severity ERROR

In this example, we simply set the clock_expression_count attribute of the
process_statement primary template to a maximum value (max) of 1. When Leda finds
VHDL code that matches the process_statement primary template, it issues an error
message if it finds more than one clock expression.

June 2006 Synopsys, Inc. 49

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

VHDL Test Code
The following code demonstrates the use of this rule to constrain VHDL. As an
additional exercise, create both a rule and VHDL code using these examples and run the
Checker.

library IEEE;
use IEEE.std_logic_1164.all;
entity example_17_en is
port (clk : in std_logic;
 clk1 : in std_logic;
 data_in : in std_logic;
 data_out : out std_logic
);
 end;

architecture RTL of example_17_en is

 signal ff_in : std_logic;
 signal ff_out : std_logic;
 signal comb : std_logic;

begin

Data_input: process (clk) -- Rule does not fire here

begin
 if (clk'event) and clk = '1' then
 ff_in <= data_in;
 end if;
end process Data_input;

comb <= not ff_in;

Data_output : process (clk, clk1) -- Rule fires here

begin
 if (clk'event) and clk = '0' then
 ff_out <= comb;
 end if;
 if (clk1'event) and clk1 = '0' then
 ff_out <= comb;
 end if;

end process Data_output;
data_out <= ff_out;

end RTL;

50 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

Using Duplicate Rule Labels and Messages
This example shows how to use the same label and message with multiple rules. Notice
the duplicate rule labels and messages. Since the rule we are writing prohibits
multi-dimensional arrays, we must establish the maximum dimension (1) for both
unconstrained and constrained arrays. Thus, we are able to use the same rule label and
error message:

Example_18:
max dimension_count in unconstrained_array_definition is 1
message "Multi-dimension arrays are illegal"
severity ERROR

Example_18:
max dimension_count in constrained_array_definition is 1
message "Multi-dimension arrays are illegal"
severity ERROR

At first glance, the max commands for the dimension_count attributes look identical,
but a closer look reveals that their contexts are different. The first rule uses the
dimension_count attribute of the unconstrained_array_definition primary template
and the second rule uses the dimension_count attribute of the
unconstrained_array_definition primary template.

Inheriting Templates
VRSL allows you to use one template that inherits the characteristics of another
template that you already defined. To show how this works, suppose we want to restrict
entity names to 20 characters. We can do this with template inheritance and the max and
limit commands, as shown in the following example:

template SHORT_ENTITY_ID is identifier
max character_count is 20

end

template SHORT_NAMED_ENTITY is entity_declaration
limit identifier to SHORT_ENTITY_ID

end

Example_19:
limit entity_declaration to SHORT_NAMED_ENTITY
message "Name of entity is too long - Max 20 characters"
severity ERROR

Notice how the SHORT_NAMED_ENTITY template inherits from the first template
(SHORT_ENTITY_ID). You can use this inheritance process for any of the VRSL
commands.

June 2006 Synopsys, Inc. 51

Leda Rule Specifier Tutorial Chapter 1: Writing Rules for VHDL

Using Multiple Commands in One Template
The following example shows how we can combine max and min commands in a single
template. This rule uses a limit command to set the range for integer values:

template MAX_INTEGER_RANGE is range
max high_bound is 2147483647
min low_bound is -2147483647

end

Example_20:
limit range in integer_type_definition to MAX_INTEGER_RANGE
message "Integer value must be in range -(2**31-1) to (2**31-1)"
severity ERROR
end

This concludes our tutorial on learning how to use VRSL to write custom rules for
constraining VHDL designs. For complete reference information on VRSL, see the
VRSL Reference Guide.

52 Synopsys, Inc. June 2006

Chapter 1: Writing Rules for VHDL Leda Rule Specifier Tutorial

June 2006 Synopsys, Inc. 53

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

2
Writing Rules for Verilog

Introduction
Welcome to the Leda Rule Specifier Tutorial, an example-based introduction to learning
how to write coding rules for use with Leda. You use coding rules to check your Verilog
designs for errors or anomalies that may cause problems for downstream tools in the
design and verification flow. For general information about Leda, see the Leda User
Guide.

You need an optional Specifier license in order to perform the exercises in this tutorial.
The tutorial is divided into two parts. Part one takes you through the process of writing
some sample rules and organizing them so that you can check some test Verilog code
using Leda, and later fix the problems right from the tool. This part of the tutorial is
organized in the following major sections:

• “Writing Rules” on page 54

• “Creating Ruleset Files” on page 55

• “Creating Policies” on page 58

• “Creating a Verilog Test File” on page 59

• “Creating a Project File” on page 60

• “Running the Checker & Fixing the Errors” on page 62

Part two explores the syntax and semantics of VeRSL, the Verilog rule writing language.
Hands-on examples are provided there to give you a feel for all of the VeRSL commands
and capabilities. This part of the tutorial is organized in the following major sections:

• “What is VeRSL?” on page 67

• “About Templates and Attributes” on page 67

• “VeRSL Rule-Writing Examples” on page 69

54 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Writing Rules
In this exercise we’ll create four new rules in the Verilog rule specification language
(VeRSL) and organize them into two different rulesets that reside in one ruleset.sl file.
Then we’ll write some Verilog code, which the rules will check. Finally, we’ll use the
rules we created to check our sample Verilog code. Note that for this first exercise, we’ll
create some relatively simple rules so that you can get a feel for rule creation,
compilation, checking, and debugging. After you master this flow, you can proceed to
the second part of this tutorial to learn how to use all of the VeRSL commands to
develop more complicated or sophisticated rules.

If you haven’t already done so, install the Leda software and configure your
environment as described in the Leda Installation Guide. Then, begin by invoking the
Specifier tool as follows (you use the same tool for both Verilog and VHDL):

% $LEDA_PATH/bin/leda -specifier &

The Specifier main window (Figure 5) opens:

Figure 5: Specifier Main Window

June 2006 Synopsys, Inc. 55

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Creating Ruleset Files
Suppose we need four new rules that:

• Make sure latches are not used in the design

• Catch missing or redundant signals in sensitivity lists

• Make sure that clocks are named “clock” or end in “_clk”

• Catch cases where clocks are mixed with different clock edges

For the sake of this exercise, let’s assume that we were unable to find rules to handle
these needs in any of the prepackaged rules that come built-in with the Leda Checker.
(In fact, there are rules similar to these that you can copy and modify.) To begin, follow
these steps:

1. Using a text editor, type in the following VeRSL source code exactly as shown. You
can use the text editor in the Specifier by choosing File > New. (Note that two
dashes “--” at the beginning of a line designate a comment.) Create the file as
“ruleset.sl”. Note that “.sl” is the standard extension for Verilog ruleset files.

Hint
For your convenience, you can find the following example VeRSL code in
the $LEDA_PATH/doc/tutorial_specifier/rsl/ruleset.sl file. If you are
viewing this document online, you can also cut-and-paste the text right from
this PDF file.

--
-- Verilog rules
--
-- In this file we create 2 rulesets, with 2 rules in each:
-- TUTOR_RS
-- TUT_1 Avoid using latches in design
-- TUT_2 Missing or redundant signals in sensitivity list
-- TUTOR_CLOCK
-- TUT_3 Clock name must end with _clk or be clock
-- TUT_4 Avoid mixing clock with different clock edge
--
-- Rules were copy/pasted and adapted from existing Leda rules found
-- in the RMM coding guide policy.
-- The source of this policy for Verilog is in $LEDA_PATH/rules/rmm/
-- RMM.sl
-- For each rule, you must copy the "command" part of the rule
-- as well as the "template" part.
--

56 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

ruleset TUTOR_RS is

--
-- Command section
--
-- Rule TUT_1
-- Avoid using latches in design
-- Copied from rule R_552_1 in $LEDA_PATH/rules/rmm/RMM.sl
-- Here, we just changed the label from R_552_1 to TUT_1
-- and commented out the link to a html document

TUT_1:
no latch in always_construct
 message "Avoid using latches in design"
-- html_document "pol_rmm.html#R_552_1"
 severity ERROR

--
-- Rule TUT_2
-- Missing or redundant signals in sensitivity list
-- Copied from rule R_554_1 in $LEDA_PATH/rules/rmm/RMM.sl

TUT_2:
force complete_sensitivity in always_construct
 message "Missing or redundant signals in sensitivity list"
-- html_document "pol_rmm.html#R_554_1"
 severity ERROR

end ruleset

------------ end of ruleset TUTOR_RS. ------
ruleset TUTOR_CLOCK is

--
-- Template section
--
-- Template for use with rule TUT_3 below
-- Copied from the template used by G_521_6
-- Here, we changed the regular expressions to
-- reflect our own new naming convention

template CLOCK_ID is identifier
limit limit_id to "_clk$", "clock"
end

template CLOCK_WITH_ID is clock
limit identifier to CLOCK_ID
end

June 2006 Synopsys, Inc. 57

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

--
-- Command section
--
-- Rule TUT_3
-- Clock name must end with _clk or be clock
-- Adapted from rule G_521_6 in $LEDA_PATH/rules/rmm/RMM.sl
-- Here, we changed the message, and the regular expression
-- used in the template CLOCK_NAME

TUT_3:
limit clock to CLOCK_WITH_ID
 message "Clock name must end with _clk or be clock"
-- html_document "pol_rmm.html#G_521_6"
 severity WARNING

--
-- Rule TUT_4
-- Avoid mixing clock with different clock edge
-- Adapted from rule G_541_1 in $LEDA_PATH/rules/rmm/RMM.sl
-- Here, we changed the message

TUT_4:
no mixed_clock in design
 message "Avoid mixing clock with different clock edge"
-- html_document "pol_rmm.html#G_541_1"
 severity WARNING

end ruleset

58 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Creating Policies
Now that we have a ruleset.sl file that contains our new rules, we need to store the new
rules in a policy. To do that, follow these steps:

1. From the Specifier main window, first open the Rule Wizard (Check > Configure).
From there, open the Policy Manager window (Tool > Policy Manager).

2. Click the Verilog tab. Then click the New button on the right side of the display.
Type in a name for the new policy (for example, “MY_TUTOR”) and click OK.

3. When your new policy name appears in the Policies pane, click it to highlight the
name and then click in the Rulesets pane. Click the Add button. This opens the
“Please choose a rule file” window.

4. Navigate to the location of the ruleset.sl file you just created and click on the file
name. Then click the Add button. This causes the tool to compile your new rulesets.
You should see messages in the Log tab at the bottom of the Specifier main window
similar to the following:

Compiling ruleset TUTOR_RS
Compiling ruleset TUTOR_CLOCK
Compilation done (block level).
Compilation done (chip level).

The Rulesets pane in the Policy Manager window now shows the two rulesets we
created (TUTOR_CLOCK and TUTOR_RS), and the Templatesets pane shows the
templatesets we used.

5. Close the Policy Manager window.

You have now created a policy (“MY_TUTOR”) containing two rulesets that are
both in the same ruleset.sl file. The rulesets contain a total of four rules (two rules
each), which we’ll use to check some sample Verilog code.

Using Tcl Shell Mode to Create New Policies
You can also create new policies and rulesets using the rule_manage_policy command
in Leda’s Tcl shell mode. For example, to create the “MY_TUTOR” policy, use the
following command at the Tcl shell prompt:

leda> rule_manage_policy -policy MY_TUTOR create

Then, to compile the ruleset.rl file you created for this tutorial, use the following
command at the Tcl shell prompt:

leda> rule_manage_policy -policy MY_TUTOR compile ruleset.sl

For more information on using Tcl shell mode, see the Leda User Guide.

June 2006 Synopsys, Inc. 59

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Creating a Verilog Test File
To test these rules, we need to create some Verilog code to check them against. We are
going to purposely violate all four rules we created in our Verilog code so that we can
see how the tool works. When we check the code with our new rules, we should see
errors for all of them. Follow these steps:

1. Using a text editor, type in the following text, and save the file as test.v.
// Simple testcase for the rules in the Verilog policy built with
// ruleset.sl file
// Will fire these rules:
// TUT_1 Avoid using latches in design
// TUT_2 Missing or redundant signals in sensitivity list
// TUT_3 Clock name must end with _clk or be clock
// TUT_4 Avoid mixing clock with different clock edge

module test_mod (data, clk, main_clk, clock, rst, load_clk,
 q, q1, q2, q3);
input data, clk, main_clk, clock, rst, load_clk;
output q, q1, q2, q3;
reg q, q1, q2, q3;

always @(data)
 begin
 if (load_clk)
// TUT_2 fires: load_clk is not in sensitivity list
 q <= data;
 else
 q <= 1'b0;
 end

always @(posedge clk or posedge rst)
//TUT_3 fires: bad naming for a clock
 begin
 if (rst == 1'b1)
 q1 <= 1'b0;
 else
 q1 <= data;
 end

always @(negedge main_clk)
// TUT_4 fires: we mixed clock with different edges
 begin

 if (rst == 1'b1)
 q2 <= 1'b0;
 else
 q2 <= data;
 end

60 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

always @(load_clk or data)
 begin
 if (load_clk)
 q3 <= data; // TUT_1 fires: we infer a latch here
 end

endmodule

Creating a Project File
Before we can use Leda to test our new rule against the sample Verilog file we created,
we must first create a project file. A project file organizes the Verilog files into easily
managed units. Follow these steps:

1. From the Specifier main window, choose Project > New. This opens the Project
Creation Wizard window.

2. Click the Specify Project Name button. This opens the Specify Project Name
window. Use the Browse button to navigate to the location where you want your
project file to reside (for example, “WORK”), and enter the project name (for
example “my_project”). Then click Save.

3. Now click the Next button at the bottom right of the window. This takes you to the
Specify Compiler Options part of the Wizard, which has tabs for VHDL and
Verilog. Click the Verilog tab.

4. In the Severity Level pane, click the radio button for the lowest severity level for
which error messages from the Verilog compiler will be printed. Compiler messages
with a severity below the specified value are not printed. (This severity level is only
used for Verilog syntax analysis, not for checking.) The default is Warning.

5. In the Version pane, click the 95, 2001, or SystemVerilog radio button, depending
on the version of Verilog you are using. The default is Verilog 95.

6. Click Next. This takes you to the Specify Libraries part of the Wizard, which has
tabs for VHDL and Verilog. Click the Verilog tab.

7. In the Include Directories pane, specify the path to any directories to be searched for
included files in your design. For this test, we don’t have any include files, so leave
this pane empty.

8. In the Library Directories and Library Files panes, click the Add button and
navigate to the location of any required source code libraries or files to be searched
by the Verilog compiler in order to resolve unresolved module instances. For this
exercise, we’re not using any resource directories or files, so leave these panes
empty.

June 2006 Synopsys, Inc. 61

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

9. Click Next. This takes you to the Specify Source Files part of the Wizard. which has
tabs for VHDL, Verilog, and All. (The All tab is for mixed-language designs.)
Source files, in this case, means Verilog source files, the ones we want to check
against our new rules. Click the Verilog tab.

10. In the Files pane, click the Add button. This opens the Add Files window. Navigate
to the location of the test.v file we created to test the new rules. Highlight the file
name and then click OK to confirm your selection. The full path to our Verilog
source file (test.v) is now displayed in the Files pane window.

11. Click Next. This takes you to the Confirm & Create part of the Wizard. Leave the
Build with Check checkbox selected and click Finish. If the tool displays a small
Get Top Module/Design/Entity window, note that this information is needed for
checking chip-level rules. For this exercise, leave these settings at their default
values and click the OK button. Leda compiles the Verilog file and executes the
Checker. You should see something like the following screen (Figure 6).

Figure 6: Specifier Project After Build

Note the test.v file in the Source Files pane on the left-hand side of the main window.
This is the test file that we wrote earlier to check against the rules we created. But look
at all the errors and warnings listed in the Error Viewer pane on the right-hand side of
the main window. How many rules can you violate with one simple test file? As it turns

62 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

out, quite a few, but we can narrow the display to focus the results to just the new rules
we created for this tutorial, as explained in the next section, Running the Checker &
Fixing the Errors.

Running the Checker & Fixing the Errors
With the project built, we will now set up and run the Checker, which will check our
sample Verilog code against the coding rules we created. Follow these steps:

1. From the Specifier main menu, choose Check > Select. This opens the Leda Rule
Wizard window, which lists all the prepackaged policies that come with the tool on
the left side of the window, in addition to the new policy we just created for this
exercise (MY_TUTOR). Some of the prepackaged policies are activated by default.
That’s why we got so many error and warning messages from the one simple test.v
file that we wrote for this tutorial. As you learn how to use Leda to check your HDL
code, don’t let the number of warning and error messages you receive throw you
off. In many cases, changing one line of code eliminates lots of error messages all at
once. And you can easily turn off rules that you don’t consider to be significant for
your design (see the section on Deactivating Rules in the Leda User Guide).

2. For now, deactivate all policies except MY_TUTOR by clicking the icons next to
each policy name until the boxes appear empty. When you are done, only the
MY_TUTOR box icon should be filled in and colored light blue to indicate that only
the new rules that we wrote are now selected for checking.

3. Open the MY_TUTOR display by clicking the (+) icon so that we can get a look at
the rules we created and how they are organized. Click the colored box icons to the
left of the TUTOR_CLOCK and TUTOR_RS rulesets one at a time. Note how the

June 2006 Synopsys, Inc. 63

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

upper-right side of the window changes to display the rule labels and messages for
each of those rulesets. The display should look similar to the following (see
Figure 7).

Figure 7: Rule Wizard with Custom Rules Displayed

64 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

4. Click the OK button.

5. From the Specifier main menu, choose Check > Execute. This time we see our
same test file (test.v) listed in the Files tab on the left, but in the Error Viewer we see
just four messages. They are the messages generated because the test file we wrote
violates all four rules that we specified in the MY_TUTOR policy (see Figure 8).

Figure 8: Checker Results for Custom Rules

6. For each warning or error message in the Error Viewer, click the (+) box icon to the
left of the message. This expands the display to show the name of the test.v file that
we tested. Click the next (+) box icon in the hierarchy. The display opens a window
right on the Verilog file that was tested, with the offending line of code indicated by
a green arrow pointer.

7. For each warning or error message, double click in the source code display in the
Error Viewer. This opens a text editor on the file. The suspect code is already
highlighted in the file. Correct the problems as shown in the following Verilog code,
which is commented to show where the problems are and how you can fix them.

June 2006 Synopsys, Inc. 65

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Hint
For your convenience, you can find a copy of this corrected test code at
$LEDA_PATH/doc/tutorial_specifier/hdl/test_fixed.v.

// Simple testcase for the rules in the Verilog policy built with
// ruleset.sl file
// Show the corrections (just for demo purpose)
// to avoid the firing of the rules:
// TUT_1 Avoid using latches in design
// TUT_2 Missing or redundant signals in sensitivity list
// TUT_3 Clock name must end with _clk or be clock
// TUT_4 Avoid mixing clock with different clock edge

module test_mod (data, clk, main_clk, clock, rst, load_clk,
 q, q1, q2, q3);
input data, clk, main_clk, clock, rst, load_clk;
output q, q1, q2, q3;
reg q, q1, q2, q3;

//always @(data)
always @(data or load_clk)
 begin
 if (load_clk)

// TUT_2 fires if load_clk is not in sensitivity list
 q <= data;
 else
 q <= 1'b0;
 end

//always @(posedge clk or posedge rst)
//TUT_3 fires: bad naming for a clock
always @(posedge clock or posedge rst)
// We just change to a "good" name for demonstration

 begin
 if (rst == 1'b1)
 q1 <= 1'b0;
 else
 q1 <= data;
 end

66 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

//always @(negedge main_clk)
// TUT_4 fires: we mixed clock with different edges
always @(posedge main_clk)
// This will prevent TUT_4 from firing (just for demo...)
 begin
 if (rst == 1'b1)
 q2 <= 1'b0;
 else
 q2 <= data;
 end

always @(load_clk or data)
 begin
 if (load_clk)
 q3 <= data;
// Without the else clause, TUT_1 fires: we infer a latch here
 else
 q3 <= 1'b0;
 end

endmodule

8. When you are done fixing each problem, choose File > Save from the editor’s
pulldown menu to save your changes.

9. From the Specifier main window, choose Project > Build. The tool recompiles your
test file.

10. From the Specifier main window, choose Check > Run. The tool checks your
corrected Verilog code again using the rules you created. This time, since we
corrected the offending code, our results come up clean, with no error messages
listed in the Error Viewer.

This concludes our first exercise with the Leda Specifier tool. As a further exercise,
copy some of your design team’s Verilog files and try running some or all of the
prepackaged policies against them to see what kind of results you get. Notice how even
simple changes in your Verilog coding eliminate lots of error messages. This can help
avoid downstream bottlenecks in your design and verification flow.

Now that we have the mechanics down for building rules using Leda, let’s explore the
syntax and semantics of the VeRSL rule specification language itself, beginning with the
first section in part two of this tutorial, What is VeRSL?

June 2006 Synopsys, Inc. 67

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

What is VeRSL?
VeRSL is a macro-based language used for writing rules that check Verilog code for
errors or anomalies that you specify using prebuilt templates and attributes, and a simple
set of commands. There are six VeRSL commands: force, no, limit, set, max, and min.
Each command has a precise syntax with allowed keywords. For complete reference
information on VeRSL commands, templates, and attributes, see the VeRSL Reference
Guide.

All terminology used for writing rules comes from either the IEEE Standard 1364-1995
Verilog Language Reference Manual (LRM) or theVeRSL Reference Guide. The LRM is
the basis upon which the VeRSL Reference Guide was created. While a few of the terms
used by Leda are unique, most of them can be found in the LRM. A review of the LRM
will help you gain a better understanding of VeRSL.

About Templates and Attributes
Before we get started writing custom rules, let’s take a closer look at templates and
attributes, because these are the building blocks that you combine with VeRSL
commands to write rules.

A template defines a model of how the Verilog code should appear. Templates are basic
elements of VeRSL code that you use to build rules or even other templates. Templates
are all prepackaged (VeRSL primary template or VeRSL secondary template). You can
assign any string to be (template my_template is template) where template is one of the
prepackaged templates and define its focus using VeRSL commands, but you cannot
create new templates or attributes yourself.

Each template has a set of attributes or characteristics of Verilog code that you can use
with it. When you define a template to model the Verilog code you want to constrain,
you select one or more attributes from this set and use VeRSL commands like force, no,
or limit to precisely define that model or template. Then you write a rule that calls that
template and constrains the code that the template matches.

When you write a rule with a primary template, you don’t need to provide a context.
Primary templates are stronger than secondary templates in this way. For example, you
can write a rule with the limit command and a primary template, such as
module_declaration like this:

limit module_declaration to your_constraint

68 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

On the other hand, when you write a rule with a secondary template, you need to provide
a context. Secondary templates are not as strong as primary templates in this way. For
example, you can write a rule with the limit command and a secondary template such as
range like this:

limit range in lsb_constant_expression to your_constraint

In this example, the lsb_constant_expression attribute provides the necessary context
for the range secondary template.

Note
Each template in the VeRSL rule specification language is either primary or
secondary. They are all clearly labelled in the VeRSL Reference Guide,
which provides complete reference information for all templates and
attributes, including the attribute name, kind, and limit_kind.

When you write rules, first you define a template, and then you call that template to
complete the rule using VeRSL commands.

June 2006 Synopsys, Inc. 69

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

VeRSL Rule-Writing Examples
The remainder of this tutorial provides examples of how to write rules that check for
common issues of concern in HDL designs. Most of the examples are designed to give
you an introduction to the basics of rule writing using the different VeRSL commands.
Other examples show you how to use different features of the language such as variables
and template inheritance, so that you can see how they work. The examples are
presented in the following sections:

• “Requiring that Module Ports be Named by Association” on page 70

• “Requiring Synchronous Resets in Flip-Flops” on page 72

• “Adding HTML Help Files for Errors” on page 72

• “Requiring Port Connections” on page 73

• “Ensuring Complete Sensitivity Lists” on page 74

• “Prohibiting Macromodules in Module Declarations” on page 76

• “Prohibiting Bidirectional Ports” on page 77

• “Prohibiting Latches” on page 78

• “Prohibiting Case Equality Operators” on page 79

• “Limiting Clocks to One Name” on page 80

• “Requiring Instance Names with “U_”” on page 81

• “Using Multiple Commands in Templates” on page 82

• “Using Variables to Ensure One Module per File” on page 83

• “Limiting Shifts to Constant Values” on page 84

• “Restricting Asynchronous Resets in Always Blocks” on page 85

• “Setting the Clock Edge” on page 87

• “Ensuring One Clock Input in Sequential Processes” on page 88

• “Specifying Max Characters for Input Port Names” on page 88

• “Regular Expressions, Template-to-Template Calling, Rule Label Duplication” on
page 89

• “Using Multiple Templates in Commands” on page 91

• “No Variables in Loops” on page 92

• “Constraining Technology-independent Registers” on page 93

70 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Hint
For your convenience, you can find VeRSL source code for all the examples
in this chapter in the $LEDA_PATH/doc/tutorial_specifier/rsl directory. The
ruleset files that contain these examples are named example_1.sl. and so on,
to match the example names used in the tutorial. You can also find Verilog
source code for the tests used in these examples in the $LEDA_PATH/doc/
tutorial_specifier/hdl directory. The .v files are named example_1.v and so
on to match the examples where they are used.

Requiring that Module Ports be Named by Association
For our first example, supposed we want to ensure that all module ports in an
instantiation are named by association rather than by position. The following code
shows how we can use a force command to implement this rule:

Example_1:
force named_port_connection in module_instantiation
message "Map module ports in instantiation by named association, not
by position"
severity ERROR

In this example, we use the named_port_connection attribute of the
module_instantiation primary template to force port connections to have named
associations. Because module_instantiation is a primary template, we did not have to
provide a context for this rule, but we wanted to limit the focus to a specific aspect of
module instantiations, so we used the named_port_connection attribute to specify that
context. If Leda finds Verilog code where module ports (in module_instantiations) are
named by position, it flags an error.

Notice the message and severity lines in the code. The message line contains the text
that is displayed when the rule is violated. The severity line indicates the level of the
violation (note, warning, error, or fatal). If these lines of code are not present, Leda
cannot flag a rule violation, so be sure to include them when you write rules.

Verilog Test Code
The following example shows how to use this rule to constrain Verilog. As an additional
exercise, create both a rule and Verilog code using these examples and run the Checker.

module abc (a, b, c);
 input a, b;
 output c;
endmodule

module def (d, e, f);

June 2006 Synopsys, Inc. 71

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

 input d, e;
 output f;
endmodule
module example_1 (h, i, j, k, l, m);
 input h, i, j, k;
 output l, m;

 abc abc (h, i, l); <<------------- Leda points here
 def def (.d(j), .e(k), .f(m));
endmodule

The VeRSL Reference Guide defines module_instantiation as follows:

Primary template belonging to classes: CONCURRENT_STATEMENT (see Table 3).

In Table 3, the Attribute column lists the attributes that you can use with the
module_instantiation primary template. The Kind column tells you how those
attributes can be used. If the attribute is a template kind, this means that it can be used
as a template itself with its own context when writing limit, no, and force commands.
For example, all statements and declarations are template kinds of attributes. The
template kind of attribute is flexible and powerful in this way.

If the attribute is a local kind, it can only be used with no and force commands, and
cannot function as a template. The Limit_Kind of an attribute tells you the type of
template or context the attribute can be constrained to. If the Limit_Kind column says
N/A (see Table 3), this means that the attribute is not constrained to a particular type of
Verilog construct or template.

Table 3: module_instantiation Primary Template Description

Attribute Kind Limit_Kind

instance_identifier template ID

module_identifier template ID

parameter_value_assignment template N/A

parameter_value_assignment template N/A

port_expression template EXPRESSION

range template range

port_reference_declaration local N/A

named_port_connection local N/A

complete_port_connection local N/A

72 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

For example, the named_port_connection attribute in our example is used as a local
kind of attribute and is not constrained to use with a particular type of template or
Verilog construct. In this case, we used the named_port_connection local attribute of
the module_instantiation primary template to define the rule requiring that all ports in
module instantiations be named by association:

Example_1:
force named_port_connection in module_instantiation
message "Map module ports in instantiation by named association, not
by position"
severity ERROR

Requiring Synchronous Resets in Flip-Flops
For our next example, let’s write a rule requiring that synchronous resets be present in
all flip-flops. We can again use a force command to implement this rule, as shown in the
following example:

Example_2:
force synchronous_reset in flipflop
message "Flip flops with synchronous resets only are allowed"
severity ERROR

In this example, we use the synchronous_reset attribute of the flipflop primary
template to focus our force command just on the items of interest.

Adding HTML Help Files for Errors
Sometimes users need more explanation of a rule violation than the single-line error
message that pops up in the Error Viewer pane of the Checker GUI. To provide this
supplementary information, you can insert an HTML reference document below the
message line as follows:

 force synchronous_reset in flipflop
 message "Flip flops with synchronous resets only are allowed"
 html_document "sync_reset.html#G_5_5_1_1"
 severity ERROR

When this rule is violated, users can hyperlink to the HTML document specified by
html_document, where more information is available. Notice that the format includes
an optional anchor within the HTML document (#G_5_5_1_1) to the specific location
of the reference.

Store the sync_reset.html file in the $LEDA_PATH/doc/html directory. For more
information about HTML error reporting, see the VeRSL Reference Guide.

June 2006 Synopsys, Inc. 73

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Hint
Using the very first exercise in this tutorial, add an html_document
reference line to your code and recompile. For the reference document,
either create a simple HTML document or just reference a known good
HTML address. Then access the HTML help document right from the Error
Viewer after you run a check that violates the rule.

Hardware Semantics
The terms synchronous_reset and flip-flop can be found in the VeRSL Reference Guide
as primary templates. However, neither of these terms is present in the LRM. This is
because the concept of a synchronous reset is not explicit in Verilog. It is inferred by
synthesis tools from Verilog code written in a certain way. This kind of inference is an
example of the hardware semantics of Verilog. VeRSL has attributes that allow these
hardware semantics to be constrained in a way similar to the language semantics.
Remember that some terms may be found in the VeRSL Reference Guide that are not in
the LRM.

Requiring Port Connections
Suppose we now want to make a slight modification to the rule in Example 1 and write a
rule requiring that all ports be connected. Before showing you how to write this rule, try
the following exercise using the code from the first example to help you.

Write a rule requiring that all ports be connected.

Hint
Look up module_instantiation in the VeRSL Reference Guide and find the
appropriate local attribute. Fill in your answer below. You can use Example
1 as a reference.

force _________________________ in module_instantiation
message "All ports must be connected"
severity ERROR

The following code shows how we can use a force command to write this rule.
Example_3:
force complete_port_connection in module_instantiation
message "All ports must be connected"
severity ERROR

In this example, we use the complete_port_description attribute of the
module_instantiation primary template and a force command to make sure code that
matches our focused model of Verilog code has all ports connected.

74 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Verilog Test Code
The following code shows the use of this rule to constrain Verilog. As an additional
exercise, create both a rule and Verilog code using these examples and run the Checker.

module def (d, e, f);
 input d, e;
 output f;
endmodule
module example_3 (h, i, j, k, l, m);
 input h, i, j, k;
 output l, m;

 def def_1 (.d(j), .e(k)); <<------------- Leda points here
 def def_2 (.d(j), .e(k), .f(m));
endmodule

Ensuring Complete Sensitivity Lists
In this example, we’ll write a rule that uses the always_construct primary template,
which is one of the basic VeRSL templates. The always_construct template comes
directly from Verilog's always statement and is one of the primary constructs used in
Verilog coding. Let’s write a rule to make sure that all combinatorial logic in always
constructs has a complete sensitivity list. The following code shows how we can use a
force command to write this rule:

template COMBINATIONAL_ALWAYS is always_construct
 force combinatorial
end

limit always_construct to COMBINATIONAL_ALWAYS severity NOTE

if COMBINATIONAL_ALWAYS then

Example_4:
force complete_sensitivity in always_construct
message "Missing/redundant signals in sensitivity list of a
combinatorial block"
severity ERROR
end if

First, we define the string COMBINATIONAL_ALWAYS to be a template of type
always_construct, which is a VeRSL primary template, Then we narrow the scope of
our template definition to the combinatorial local attribute of that template using a
force command, Thus, our template is only looking for Verilog code in always blocks
that deals with combinatorial logic.

June 2006 Synopsys, Inc. 75

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

In the next section of code, we limit always constructs in our Verilog code to our
COMBINATIONAL_ALWAYS template definition. If Leda finds an always block with
clock-based sequential logic, it issues a note message, per the severity NOTE statement
at the end of that line of code.

Next, we use some conditional logic to further constrain Verilog code that matches our
template. If Leda finds always_constructs that match our
COMBINATIONAL_ALWAYS template, it forces them to have a complete sensitivity
list, using the complete_sensitivity attribute of the always_construct primary template.
This rule causes Leda to flag an error if it finds combinatorial logic in always constructs
that do not have complete sensitivity lists.

Verilog Test Code
The following code demonstrates the use of this rule to constrain Verilog. As an
additional exercise, create both a rule and Verilog code using these examples and run the
Checker.

module example_4 (clk, a, b, foo, c, e);
 input a, b, foo, clk;
 output c, e;
 reg c, d;

always @(a or b) // Here, the sensitivity list is OK
 c <= a & b;

always @(a or foo) // - Leda points here--foo is redundant
 begin
 d <= a & b; // - Leda points here--b is missing from the list
 c <= d; // - Leda points here--d is missing from the list
 end

always @(posedge clk) // Just get a NOTE message here--it’s sequential
block
 begin
 d <= b & a;
 c <= d;
 end

endmodule

As a further exercise, look up the always_construct in both the LRM and the VeRSL
Reference Guide. Consider the similarities and differences in the terminology used in
each manual. Also, study the syntax and structure of the basic template used in this
example. Understanding templates is one of the keys to learning VeRSL.

76 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Prohibiting Macromodules in Module Declarations
In this example, we want to constrain the Verilog code so that macromodule is not used
in module declarations. The LRM says that either module or macromodule can be used
in module declarations, but most coding conventions recommend using module. The
following code shows how we can use a no command to implement this rule:

Example_5:
no macromodule in module_declaration
message "Macromodules are not supported for synthesis"
severity ERROR

In this example, module_declaration is a primary template, so it does not require a
context. But we want our rule to just look for macromodules and signal an error when it
finds them, so we use the macromodule local attribute of the module_declaration
primary template to narrow the focus of our rule to just macromodules and the no
command to prohibit their use.

Verilog Test Code
The following code demonstrates the use of this rule to constrain Verilog. As an
additional exercise, create both a rule and Verilog code using these examples and run the
Checker.

macromodule example_5 (in1, in2, out1); <<----- Leda pointa here
 input [3:0] in1, in2;
 output [4:0] out1;
 assign out1 = in1 + in2;
endmodule

June 2006 Synopsys, Inc. 77

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Prohibiting Bidirectional Ports
This example shows how to use a no command to prohibit the use of bidirectional ports.
See if you can use the previous rule as a guide to writing this rule, as described in the
following exercise.

Write a rule that prohibits the use of bidirectional ports in Verilog code.

Hint
A bidirectional port corresponds to an inout_declaration in VeRSL. Fill in
your answer below.

no _________________________ in module_declaration
message "No bi-directional ports are allowed in the design"
severity ERROR

The following example shows how we can write this rule:
Example_6:
no inout_declaration in module_declaration
message "No bi-directional ports are allowed in the design."
severity ERROR

In this example, module_declaration is again a primary template, so it does not require
a context. But we want our rule to look only for bidirectional ports and signal an error
when it finds them, so we use the inout_declaration local attribute of the
module_declaration to narrow the focus of our rule just to bidirectional ports and the
no command to prohibit their use.

Verilog Test Code
The following code demonstrates the use of this rule to constrain Verilog. As an
additional exercise, create both a rule and Verilog code using these examples and run the
Checker.

module example_6 (ab, aBc, ad, aBc12, ad_3, DBC);
 input [3:0] ab;
 input aBc ;

 inout aBc12; <<------------ Leda points here
 inout ad; <<------------- Leda points here
 output ad_3;
 output [2:0] DBC;
endmodule

78 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Prohibiting Latches
You use the all keyword to apply a command or rule globally throughout your design. In
this next example, we’ll write a rule that globally prohibits latches in Verilog code:

Example_7:
no latch in all
message "Avoid latch inferring in your design"
severity ERROR

In this example, we use the latch primary template, which does not require a context. In
our earlier examples, we narrowed the focus of primary templates anyway using
attributes of the primary templates because we wanted our templates to match only
particular aspects of the Verilog constructs represented by the templates. In this case, we
use a new feature of VeRSL, the all keyword, to instead widen the scope of our rule, and
the no command to globally prohibit latches in the design.

Here are some other examples for how to use the all keyword that are similar to the
previous example. The only difference is that they globally prohibit different Verilog
constructs, using the repeat_statement and while_statement primary templates as
models of the code that we want to constrain.

Example_7a:
no repeat_statement in all
message "Repeat loop statements are not supported for synthesis"
severity ERROR

Example_7b:
no while_statement in all
message "While loop statements are not supported for synthesis"
severity ERROR

Note
If no context is present in a command, the default is all.

June 2006 Synopsys, Inc. 79

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Prohibiting Case Equality Operators
Suppose we want to prohibit the use of the case equality operator “===” in our design.
To write this rule, we first create a template that uses a limit command to focus on the
case equality operator and then use a no command in our rule to constrain the Verilog
code according to the template:

template CASE_EQUALITY_BIN_OP is binary_operation
 limit operator_symbol to "==="
end

Example_8:
no CASE_EQUALITY_BIN_OP in binary_operation
message "The case equality operator '===' is not supported in binary
operations"
severity ERROR

In the template definition, we define the string CASE_EQUALITY_BIN_OP to be a
template of type binary_operation, which is a primary template that does not require a
context. But we want to narrow the focus of our template to a particular operator
symbol, so we use a limit command and the operator_symbol attribute of the
binary_operations primary template to make our CASE_EQUALITY_BIN_OP
template or model match just case equality operators.

In the next code segment, we call our CASE_EQUALITY_BIN_OP template and use
the no command to prohibit the use of case equality operators in binary operations in our
Verilog code.

Verilog Test Code
The following code demonstrates the use of this rule to constrain Verilog. As an
additional exercise, create both a rule and Verilog code using these examples and run the
Checker.

module example_8 (in1, in2, out1);
 input [3:0] in1, in2;
 output [4:0] out1;
 assign out1 = in1 === in2; <<-------- Leda pointa here
endmodule

As a further exercise, write a rule that prohibits the use of the “+” symbol in binary
operations.

80 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Limiting Clocks to One Name
Suppose we want to limit all clocks in our design to one name (for example, “clk”). The
following code shows how we can use a limit command to write this rule:

template CLOCK_WITH_ID is clock
 limit identifier to "^clk$"
end

Example_9:
limit clock to CLOCK_WITH_ID
message "A clock signal should be called 'clk'"
severity ERROR

In this example, we first define the string CLOCK_WITH_ID to be a template of type
clock, which is a primary template that does not require a context. But we want to
narrow the focus of our template to just identifiers, so we use a limit command in the
template definition along with the identifier attribute of the clock primary template to
make our template or model match just identifiers named “clk”.

In the next code segment, we call our CLOCK_WITH_ID template and use a limit
command to make sure all clocks in our design match our template’s definition of clock
names. When you run this rule on your Verilog code, Leda flags an error if it finds any
clocks not named “clk”.

Verilog Test Code
The following code demonstrates the use of this rule to constrain Verilog. As an
additional exercise, create both a rule and Verilog code using these examples and run the
Checker.

module example_9a (D, my_clk, rst_n, Q);
input D, my_clk, rst_n;
output Q;
reg Q;

always @(posedge my_clk or posedge rst_n) // <<--- Leda pointa here
 begin
 if (rst_n)
 Q = 0;
 else
 Q = D;
 end
endmodule

module example_9b (D, clk, rst, Q);
input D, clk, rst;
output Q;
reg Q;

June 2006 Synopsys, Inc. 81

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

always @(posedge clk or posedge rst)
 begin
 if (rst)
 Q = 0;
 else
 Q = D;
 end
endmodule

Requiring Instance Names with “U_”
Here’s a slight variation on the previous example. In this example, we’ll write a rule
requiring that instance names begin with “U_”:

template MOD_INSTANTIATION_ID is identifier
 limit limit_id to "^U_"
end

Example_10:
limit instance_identifier in module_instantiation to
MOD_INSTANTIATION_ID
message "Instance names should begin with 'U_'"
severity WARNING

In this example, we first define the string MOD_INSTANTIATION_ID to be a template
of type identifier, which is a primary template that does not require a context. But we
want to narrow the focus of our template or model to just limit IDs, so we use the limit
command in the template definition along with the limit_id attribute of the identifier
primary template to make our template or model match just limit IDs named “U_”.

In the next code segment, we call our MOD_INSTANTIATION_ID template and use a
limit command to make sure all instance_identifiers in our design match our template’s
definition of limit IDs. When you run this rule on your Verilog code, Leda flags an error
if it finds any instance identifiers in module instatiations that do not begin with “U_”, as
we specified.

Note the use of identifier as a primary template in this example. Compare this use to the
previous example, where we used identifier as an attribute of the clock primary
template. This is an example of the dual nature of some primary template attributes; they
can function as primary templates or just as attributes of other primary templates,
depending on your needs. VeRSL is flexible in this way. When you look up templates in
the VeRSL Reference Guide to see what’s available, remember that when you see the
word template in the Kind column for the various template definitions, this means that
the attribute can also function as a template itself.

82 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Verilog Test Code
The following code demonstrates the use of this rule to constrain Verilog. As an
additional exercise, create both a rule and Verilog code using these examples and run the
Checker.

module abc (a, b, c);
 input a, b;
 output c;
endmodule

module def (d, e, f);
 input d, e;
 output f;
endmodule
module example_10 (h, i, j, k, l, m);
 input h, i, j, k;
 output l, m;
 abc U_abc (.a(h), .b(i), .c(l));

 def def (.d(j), .e(k), .f(m)); <<------- Leda pointa here

endmodule

Using Multiple Commands in Templates
This next example introduces the concept of multiple lines of code in templates. Let’s
write a rule that forbids the use of initial constructs to initialize variables:

template INITIAL_WITHOUT_ASSIGNMENTS is initial_construct
 no non_blocking_assignment
 no blocking_assignment
 no procedural_continuous_assign
 no procedural_continuous_force
 end

Example_11:
limit initial_construct to INITIAL_WITHOUT_ASSIGNMENTS
message "Do not use initial constructs to initialize variables"
severity WARNING

In this example, we first define the string INITIAL_WITHOUT_ASSIGNMENTS to be
a template of type initial_construct, which is a primary template that does not require a
context. But we want to narrow the focus of our template to several specific Verilog
constructs, so we use a series of no commands coupled with the
non_blocking_assignment, blocking_assignment, procedural_continuous_assign,
and procedural_continuous_force attributes of the initial_construct primary template
to focus our rule just on these attributes of interest.

June 2006 Synopsys, Inc. 83

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Note
Notice how you can widen or narrow the scope of your template definitions
using the attributes defined for each template and VeRSL commands such as
force, no, and limit.

In the next code segment, we call the INITIAL_WITHOUT_ASSIGNMENTS template
or model that we just defined and use a limit command to make sure that variables in
our Verilog code are not initialized with the initial constructs we specified in our
template definition.

Using Variables to Ensure One Module per File
In this next example, we’ll write a rule to constrain our Verilog code so there is only one
module per file and the name of the module is the same as the file name. This is a
common naming convention rule that uses the reserved <module> variable:

template MODULE_FILE_NAME is module_declaration
 limit file_name to "<module>"
end

Example_12:
limit module_declaration to MODULE_FILE_NAME
message "The module name should be the same as the file name"
severity ERROR

In this example, we first define the string MODULE_FILE_NAME to be a template of
type module_declaration, which is a primary template that does not require a context.
But we want to narrow the focus of our template or model to just file names, so we use a
limit command and the file_name attribute of the module_declaration template to
focus our template just on file names for modules, using the <module> variable.

In the next code segment, we call our MODULE_FILE_NAME template and use the
limit command to apply this model of Verilog code to all module_declarations in our
design.

84 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Limiting Shifts to Constant Values
In this example, we’ll write a rule that makes sure all shifts are done by constant
(non-variable) values. It is generally accepted as good coding practice to keep variables
out of shifting operations. One of the unique features of the limit command is that it lets
you define conditional logic tests. In fact, the limit command is the only VeRSL
command that uses conditional logic.

To write this rule (all shifts are by a constant value), we first need to create three
templates, each with a set command, that do the following:

• Define a static variable

• Limit our code to binary operations

• Detect the shift operators

We can then test for the conditions defined in the templates, as shown in the following
example:

template EXP is conditional_expression
 set evaluation_time to locally_static_evaluation
end

template EXP2 is conditional_expression
 set evaluation_time to globally_static_evaluation
end

template LIMIT_SHIFT_RHS is binary_operation
 limit right_expression to EXP,EXP2
end

template DETECT_SHIFT_OPERATION is binary_operation
 limit operator_symbol to "<<", ">>"
end

limit binary_operation to DETECT_SHIFT_OPERATION severity NOTE
 if DETECT_SHIFT_OPERATION then
 Example_13:
 limit binary_operation to LIMIT_SHIFT_RHS
 message "Do not shift by a non-constant value"
 severity ERROR
end if

In each template definition, we assign strings of our choosing to templates, as shown in
earlier examples, and use the set command and template attributes to focus our
templates or models only on specific aspects of the Verilog code. Notice how the EXP
and EXP2 templates that we defined first are called by the third template,
LIMIT_SHIFT_RHS. In the LIMIT_SHIFT_RHS template definition, we use a limit

June 2006 Synopsys, Inc. 85

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

command and the right_expression attribute of the binary_operations primary
template to limit right expressions in our Verilog code to the templates or models we set
up in EXP and EXP2.

In the next code segment, we call our DETECT_SHIFT_OPERATION template and use
a limit command to restrict binary_operations to the operator_symbols that we
defined in our template (<< and >>). If Leda finds operator symbols in binary operations
that do not match this template or model, it issues a NOTE message, as we specified.

In the next code segment, we use our DETECT_SHIFT_OPERATION template with
some if ... then ... logic. If Leda finds Verilog code that matches the definition we
supplied in this template, it enforces a rule using a limit command to make sure
binary_operations in such code segments match the LIMIT_SHIFT_RHS template we
specified.

Restricting Asynchronous Resets in Always Blocks
For our next exercise, let’s build on what we’ve already learned and write a rule that
allows only one asynchronous reset in each always block.

Hint
To start writing this rule, first create two templates that do the following: (1)
look for sequential logic only, and (2) set the maximum number of
asynchronous resets to a value of 1.

Recalling our template syntax, here are the first lines of each of our templates in rough
form:

template (sequential logic only) is A
template (asynchronous reset value is 1) is A

where:

A = VeRSL primary or secondary template

Now, let’s name our templates, remembering the uppercase convention. Let’s also fill in
the template structure as follows:

template ALWAYS_SEQUENTIAL is A
VeRSL command
end

template ONE_ASYNC_RESET_IN_ALWAYS is A
VeRSL command
end

86 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

At this point, you probably need another hint to fill in more information. To finish the
code, we’ll need conditional limit commands. The structure of the code should look like
this:

template ALWAYS_SEQUENTIAL is A
VeRSL command
end

template ONE_ASYNC_RESET_IN_ALWAYS is A
VeRSL command
end

limit A to (one of our templates) severity NOTE
if (one of our templates) then

Example_BetterRuleParadigm:
limit A to (the other template)
message "Only one asynchronous reset is allowed in an always block"
severity ERROR

The difficulty now is determining A. Looking back at the rule, note the phrase “in an
always block.” This Verilog construct may be familiar to you as the VeRSL
always_construct from Example 4. In fact, A for both templates and the limit commands
is always_construct.

The VeRSL commands within the templates are now all that are left to complete the
code. For the first template, since we only want sequential logic, we use a no command
with the combinatorial local attribute (from the always_construct primary template) as
follows:

template ALWAYS_SEQUENTIAL is always_construct
 no combinatorial
end

For the second template, since we want to limit the number of asynchronous resets to 1,
we use the max command as follows:

template ONE_ASYNC_RESET_IN_ALWAYS is always_construct
 max asynchronous_reset is 1
end

The completed code looks like the following example:
template ALWAYS_SEQUENTIAL is always_construct
 no combinatorial
end

template ONE_ASYNC_RESET_IN_ALWAYS is always_construct
 max asynchronous_reset is 1
end

June 2006 Synopsys, Inc. 87

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

limit always_construct to ALWAYS_SEQUENTIAL severity NOTE
if ALWAYS_SEQUENTIAL then

Example_BetterRuleParadigm:
limit always_construct to ONE_ASYNC_RESET_IN_ALWAYS
message "Only one async. reset is allowed in an always block"
severity ERROR

end if

Setting the Clock Edge
Suppose we want to make sure that all clock edges in our design are set to rising. We can
do this with a set command, which we’ll use to set an attribute to a value, as shown in
the following code:

Example_14:
set edge in clock to rising
message "Use rising edge clock"
severity ERROR

In this example, we set the edge attribute of the clock primary template to rising. In
fact, the edge attribute of the clock primary template can only be used with set
commands.

Verilog Test Code
The following code shows how to use this rule to constrain Verilog. As an additional
exercise, create both a rule and Verilog code using these examples and run the Checker.

module example_14 (clk1, clk2, a , b);

input clk1, clk2, a;
output b;
reg b;

always @(posedge clk1)
begin
 b <= a;
 end

always @(negedge clk2) <<------------- Leda pointa here
 begin
 b <= a;
 end
endmodule

As a further exercise, review the VeRSL Reference Guide and see if you can find the
“rising” keyword.

88 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

Hint
Enumerated types are primitives in VeRSL. In VeRSL, rising is one of the
values listed for edge_type.

Ensuring One Clock Input in Sequential Processes
Suppose we want to create a rule to make sure that sequential always blocks have only
one clock input. The following code shows how we can use a max command to write
this rule:

Example_15:
max clock in always_construct is 1
message "Sequential always block must have one clock signal exactly"
severity ERROR

In this example, we use a max command along with the clock attribute of the
always_construct primary template to make sure there is not more than one clock per
always block in our Verilog code.

Specifying Max Characters for Input Port Names
Now let’s write a rule requiring that input port names have a maximum of 15 characters.
We can break this rule down into a couple of basic elements:

• Maximum character count is 15

• Scope is limited to input ports

We’ll need two templates to model our code for these two needs. With the first template,
we’ll use a max command to set the maximum value on character count. With the
second template, we’ll limit the scope to input ports. Then we’ll call the templates from
our rule using another limit command, as shown in the following example:

template SIG_PORT_CHAR_COUNT is identifier
 max character_count is 15
end

template INPUT_CHAR_COUNT is input_declaration
 limit identifier to SIG_PORT_CHAR_COUNT
end

Example_16:
limit input_declaration to INPUT_CHAR_COUNT
message "An input port name can only have a max of 15 characters"
severity ERROR

June 2006 Synopsys, Inc. 89

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

As a further exercise with max commands, write a rule to make sure input port names
have a minimum of five characters with this additional constraint: the port names must
start with “PR_”.

Hint
See the earlier examples that use limit commands.

Advanced Rule Creation
The examples in this last section are included to demonstrate the power and flexibility of
VeRSL. While you are not expected to understand all of the concepts presented here,
you can benefit by studying the examples, paying particular attention to the use of
templates and the overall structure of the code.

Because the following examples are long, there are running comments (***) that
explain the code segments.

Regular Expressions, Template-to-Template Calling,
Rule Label Duplication

Three basic concepts are presented in this example:

• Constraining names using UNIX regular expressions

• Calling a template from another template

• Duplicating rule labels

We can use duplicate rule labels when we want to classify errors created by rule
violations under broad categories:

Using templates to define regular expressions

template DW_ID is identifier
 limit limit_id to "^DW_"
end

template PRODUCT_ID is identifier
 limit limit_id to "^.._..._",
 "^.._...._",
 "^.._....._"
end

Calling a template from a template

template MODULE_ID is identifier

90 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

 limit limit_id to "<PRODUCT_ID>.$",
 "<PRODUCT_ID>..$",
 "<PRODUCT_ID>...$",
 "<PRODUCT_ID>....$",
 "<PRODUCT_ID>.....$",
 "<PRODUCT_ID>......$",
 "<PRODUCT_ID>.......$",
 "<PRODUCT_ID>........$"

end

template DW_MODULE is module_declaration
 limit identifier to DW_ID
end

template MIDDLE_MODULE is module_declaration
 limit identifier to PRODUCT_ID
end

template END_MODULE is module_declaration
 limit identifier to MODULE_ID
end

Rule label duplication

MF_1C_R:
 limit module_declaration to DW_MODULE
 message "Use 'DW_' at the beginning of module name"
 severity ERROR
MF_1C_R:
 limit module_declaration to MIDDLE_MODULE
 message "Use 3 to 5 characters for the PRODUCT name of the form
 'DW_<PRODUCT_NAME>_"
 severity ERROR
MF_1C_R:
 limit module_declaration to END_MODULE
 message "The module name has to have up to 8 characters of the
 form 'DW_<PRODUCT_NAME>_<MODULE>"
 severity ERROR

June 2006 Synopsys, Inc. 91

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Using Multiple Templates in Commands
This example shows how to use multiple templates in commands. The limit command
constrains the code to the sequential and combinatorial templates. Then a conditional
statement enforces the rules. Note the rule label duplication, as in the previous example:

template ALWAYS_SEQUENTIAL is always_construct
 no combinatorial
end

template ALWAYS_COMBINATORIAL is always_construct
 force combinatorial
end

Two templates in limit command

limit always_construct to ALWAYS_SEQUENTIAL, ALWAYS_COMBINATORIAL
severity NOTE
if ALWAYS_SEQUENTIAL then
CS_5P_R:
 no blocking_assignment
 message "No blocking assignment are allowed in a seqential block"
 severity ERROR
end if
if ALWAYS_COMBINATORIAL then
CS_5P_R:
 no non_blocking_assignment
 message "No non-blocking assignment are allowed in a combinatorial
 block"
 severity ERROR
end if

92 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

No Variables in Loops
Suppose we want to constrain our Verilog code so that variables do not show up in loops
(for statements). To solve this problem, we once again need to use multiple templates, as
shown in the following example:

Define the possible variables (local, global, parameter, literal)

 template LOC_STAT_BINOP is binary_operation
 set evaluation_time to locally_static_evaluation
 end

 template GLOB_STAT_BINOP is binary_operation
 set evaluation_time to globally_static_evaluation
 end

 template PARAM_SIMPLE_NAME is name
 limit object_definition to parameter_declaration
 end

 template LITERAL_VALUE is literal
 end

Right side of expression must be one of previous templates

 template BINOP_WITH_STATIC_RIGHT_EXP is binary_operation
 limit right_expression to LOC_STAT_BINOP, GLOB_STAT_BINOP,
 LITERAL_VALUE, PARAM_SIMPLE_NAME
 end

Write the rule (note multiple templates in LIMIT command)

 SYN9_26:
 limit expression in for_statement to LOC_STAT_BINOP,
 GLOB_STAT_BINOP,
 LITERAL_VALUE,
 PARAM_SIMPLE_NAME,
 BINOP_WITH_STATIC_RIGHT_EXP
 message "Expression bound in for loop statements should be
 statically computable"
 severity ERROR

June 2006 Synopsys, Inc. 93

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

Constraining Technology-independent Registers
In this final example, let’s create a rule that constrains our Verilog code for
technology-independent registers. The Verilog code we are modeling is shown in the
first comments. To write this rule, we first create all the templates and then use them in
the limit command section to constrain the Verilog code:

ruleset RULESET_6 is
--
-- Rule G_551_1 : Use the following templates to infer
technology-independent registers
--
-- always @(posedge clk [or posedge reset])
-- begin : LABEL
-- if (reset == 1'b1)
-- begin
-- ...
-- end
-- else
-- begin
-- ...
-- end
-- end

-- Template Section

 template EVENT_TIMING_CONTROL is procedural_timing_control_statement

force event_control
 end

 template SEQUENTIAL_FF_ALWAYS is always_construct
 force flipflop
 end

 template ALWAYS_WITH_ONE_TIMING_CONTROL is always_construct
 max procedural_timing_control_statement is 1
 end

 template ALWAYS_WITH_CLOCK_AND_ASYNCH_RESET is always_construct
 force flipflop
 force clock
 force asynchronous_reset
 end

 template ALWAYS_WITH_CLOCK_AND_SYNCH_RESET is always_construct
 force flipflop
 force clock

94 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

 force synchronous_reset
 end

 template POSEDGED_ASYNC_RESET is asynchronous_reset
 set edge to rising
 end

 template NEGEDGED_ASYNC_RESET is asynchronous_reset
 set edge to falling
 end

 template BINARY_0 is literal
 set base to 2
 limit value to "^0$"
 end

 template BINARY_1 is literal
 set base to 2
 limit value to "^1$"
 end

 template BINARY_LOW_RESET_CONDITION is binary_operation
 limit operator_symbol to "=="
 limit right_expression to BINARY_0
 end

 template BINARY_HIGH_RESET_CONDITION is binary_operation
 limit operator_symbol to "=="
 limit right_expression to BINARY_1
 end

-- Command Section

G_551_1:
limit statement in always_construct to EVENT_TIMING_CONTROL
message "The always keyword must be followed by an event list @(...)"
severity WARNING

limit always_construct to SEQUENTIAL_FF_ALWAYS severity NOTE
if SEQUENTIAL_FF_ALWAYS then

G_551_1:
max clock in always_construct is 1
message "There should be one clock signal exactly in the sensitivity
list of a sequential block"
severity WARNING

June 2006 Synopsys, Inc. 95

Leda Rule Specifier Tutorial Chapter 2: Writing Rules for Verilog

limit always_construct to ALWAYS_WITH_ONE_TIMING_CONTROL
severity NOTE

if ALWAYS_WITH_ONE_TIMING_CONTROL then

G_551_1:
limit expression in event_control to posedge_event, negedge_event
message "Level sensitive events are not allowed in a sequential always
block"
severity WARNING
end if

-- THIS SECTION FOR SEQUENTIAL BLOCKS WITH SYNCH/ASYNCHRONOUS RESET

limit always_construct to
ALWAYS_WITH_CLOCK_AND_ASYNCH_RESET,
ALWAYS_WITH_CLOCK_AND_SYNCH_RESET
severity NOTE

if ALWAYS_WITH_CLOCK_AND_ASYNCH_RESET then

G_551_1:
max asynchronous_reset in always_construct is 1
message "There should be exactly one asynchronous signal in the
sensitivity list of a sequential block"
severity WARNING

G_551_1:
limit asynchronous_reset to POSEDGED_ASYNC_RESET, NEGEDGED_ASYNC_RESET
message "An asynchronous set/reset signal should be preceded by the
keyword 'posedge' or 'negedge' in the sensitivity list"
severity WARNING

limit asynchronous_reset to POSEDGED_ASYNC_RESET, NEGEDGED_ASYNC_RESET
severity NOTE
if POSEDGED_ASYNC_RESET then
G_551_1:
limit expression in asynchronous_reset to BINARY_HIGH_RESET_CONDITION
message "Use 'if(<asynch_reset> == 'b1)' for rising edge asynchronous
reset"
severity WARNING
end if

if NEGEDGED_ASYNC_RESET then
G_551_1:
limit expression in asynchronous_reset to BINARY_LOW_RESET_CONDITION
message "Use 'if(<asynch_reset> == 'b0)' for falling edge asynchronous
reset"
severity WARNING

96 Synopsys, Inc. June 2006

Chapter 2: Writing Rules for Verilog Leda Rule Specifier Tutorial

end if
end if

if ALWAYS_WITH_CLOCK_AND_SYNCH_RESET then
G_551_1:
max synchronous_reset in always_construct is 1
message "There should be exactly one synchronous reset signal in a
synchronous block"
severity WARNING

G_551_1:
limit expression in synchronous_reset to BINARY_HIGH_RESET_CONDITION,
BINARY_LOW_RESET_CONDITION
message "Use 'if(<synch_reset> == 'b0)' or 'if(<synch_reset> == 'b1)'
for synchronous reset expressions"
severity WARNING

end if
end if

end ruleset

This concludes our tutorial on learning how to use VeRSL to write custom rules for
constraining Verilog designs. For complete reference information on VeRSL, see the
VeRSL Reference Guide.

June 2006 Synopsys, Inc. 97

Leda Rule Specifier Tutorial Index

Index
A

About the manual 11
all keyword 78
Asynchronous resets

restricting 85
Attribute names

prohibiting expressions in 40
Attributes

about 30, 67

B
Bidirectional ports

prohibiting 77
Binary operators

prohibiting XNOR 40

C
Checker

results window 27, 64
running 25, 62

Clock edges
Verilog 87

Clock signals
Verilog 88

Clocks
limiting number in processes 48
limiting to one name 41, 80
one in sequential processes 88
setting edge 87
Verilog 80

Commands
force 83
leda -specifier 16, 54
limit 79
max 86
min 51
no 76
set 87
VeRSL 67

VRSL 30
Constant declarations

making illegal 34
requiring in packages 33

D
Documentation conventions 12

E
Enumerated types

in VeRSL 88
in VRSL 47
using 47

Error reports 24, 61
using HTML 36, 72

Examples
VeRSL source code 70
VRSL source code 33

F
Files 17, 55

.vhd 21
adding HTML help 72
project 23, 60
ruleset 17
ruleset.rl 17
ruleset.sl 55
test.v after check 64
test.vhd 24, 61
test.vhd after check 27
VHDL test 21

Flip-flops
with synchronous resets 72

force command 83

G
Getting help 13

98 Synopsys, Inc. June 2006

Index Leda Rule Specifier Tutorial

H
Hardware semantics

example 73
inferring 73
Verilog 73
VeRSL example 73

Help
getting 13

HTML error reports 36, 72
HTML help files 72

I
Instance names

specifying conventions 81
Verilog 81

K
Keywords

all 78

L
Latches

prohibiting 78
Leda

installation and configuration 16, 54
Libraries

specifying 23, 60
limit command 79

with two templates 91
Limit_Kind

reference info 31, 68
type of attribute 35, 71

LRM
Language Reference Manual 67

M
Macromodules

prohibiting in module declarations 76
Manual overview 11
Manuals

Leda Verilog Rule Specifier 67
LRM 30, 67

Verilog Language Reference 67
VHDL Language Reference 30

max command 86
min command 51
Module declarations

prohibiting macromodules 76
Module ports

naming by association 70
module variable 83

N
no command

VeRSL 76
VRSL 37

O
Options

VHDL 23, 60

P
Policies

creating 20, 58
Port connections

requiring 73
Verilog 73

Port names
specifying max characters 88

Primary template
VeRSL 67
VRSL 35

Project file
creating 23, 60

R
Real literals

prohibiting 48
Registers

technology-independent 93
Regular expressions 89
Related documentation 11
Reports

error 24, 61

June 2006 Synopsys, Inc. 99

Leda Rule Specifier Tutorial Index

Resets
constraining prefixes for 44

Rule labels
using duplicate 50

Rule messages
using duplicate 50

Rule writing
advanced 89
rule label duplication 89

Rules
creating new 16
writing from scratch 16

ruleset 17, 55
Ruleset files

creating 17, 55
ruleset.rl file 17
ruleset.sl file 55

S
Sensitivity lists

ensuring complete 74
set command 87
Shifts

limiting to constants 84
Specifier

main window 16, 54
project after build 24, 61

Specify project window 23, 60
Synchronous resets

in flip-flops 72

T
Templates

about 30, 67
calling other templates 89
inheriting 50
multiline 82
primary 31, 67
secondary 31, 68
two with limit command 91
using multiple 43
using multiple in commands 91
with max command 88

Test files
VHDL 21

test.v file 64
test.vhd file 24, 27, 61
Typographic and symbol conventions 12

V
Variables

module 83
prohibiting in loops 92
using for naming conventions 43
VeRSL 83
VRSL 43

Verilog
bidirectional ports 77
macromodules 76
port connections 73

VeRSL
commands 67
enumerated types 88
variables 83

VHDL
sample ruleset file 17

VHDL 87 23, 60
VHDL 93 23, 60
VHDL test file 21
VRSL

commands 30
example source code 33
primary template 35

VRSL variables
entity 43

W
Windows

specify project 23, 60

100 Synopsys, Inc. June 2006

Index Leda Rule Specifier Tutorial

	Leda Document Navigator
	Contents
	Tables
	Figures
	Preface
	About the Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Leda Help
	The Synopsys Web Site

	1 Writing Rules for VHDL
	Introduction
	Writing Rules
	Creating Ruleset Files
	Creating Policies
	Using Tcl Shell Mode to Create New Policies

	Creating a VHDL Test File
	Creating a Project File
	Running the Checker & Fixing the Errors
	What is VRSL?
	About Templates and Attributes
	VRSL Rule-Writing Examples
	Requiring Constant Declarations in Packages
	Making Deferred Constant Declarations Illegal
	Adding HTML Help Files for Errors
	Requiring Synchronous Resets in Flip-Flops
	Ignoring Alias Declarations
	Adding Context to Rules
	Requiring that Default Port Values be Ignored
	Prohibiting Latches
	Prohibiting XNOR Binary Operators
	Prohibiting Expressions in Attribute Names
	Limiting Clocks to One Name
	Forcing Process Statements to be Combinatorial
	Using Variables to Establish Naming Conventions
	Using Multiple Templates
	Constraining Prefixes for Active-High and Active-Low Resets
	Using Enumerated Types
	Prohibiting the use of Real Literals
	Limiting the Number of Clocks in Processes
	Using Duplicate Rule Labels and Messages
	Inheriting Templates
	Using Multiple Commands in One Template

	2 Writing Rules for Verilog
	Introduction
	Writing Rules
	Creating Ruleset Files
	Creating Policies
	Using Tcl Shell Mode to Create New Policies

	Creating a Verilog Test File
	Creating a Project File
	Running the Checker & Fixing the Errors
	What is VeRSL?
	About Templates and Attributes
	VeRSL Rule-Writing Examples
	Requiring that Module Ports be Named by Association
	Requiring Synchronous Resets in Flip-Flops
	Adding HTML Help Files for Errors
	Requiring Port Connections
	Ensuring Complete Sensitivity Lists
	Prohibiting Macromodules in Module Declarations
	Prohibiting Bidirectional Ports
	Prohibiting Latches
	Prohibiting Case Equality Operators
	Limiting Clocks to One Name
	Requiring Instance Names with “U_”
	Using Multiple Commands in Templates
	Using Variables to Ensure One Module per File
	Limiting Shifts to Constant Values
	Restricting Asynchronous Resets in Always Blocks
	Setting the Clock Edge
	Ensuring One Clock Input in Sequential Processes
	Specifying Max Characters for Input Port Names

	Advanced Rule Creation
	Regular Expressions, Template-to-Template Calling, Rule Label Duplication
	Using Multiple Templates in Commands
	No Variables in Loops
	Constraining Technology-independent Registers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

