
AN 812: Platform Designer System
Design Tutorial

Online Version

Send Feedback AN-812

ID: 683855

Version: 2018.04.02

https://www.intel.com/content/www/us/en/docs/programmable/683855/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

Platform Designer System Design Tutorial..3
Hardware and Software Requirements.. 5
Download and Install the Tutorial Design Files..5
Build the Hardware Design.. 6

Open the Intel Quartus Prime Pro Edition Project...6
Build a Platform Designer System with a Top-Down Approach................................... 7
Implement the Memory Tester Subsystem.. 31

Build Software Applications and Download the Design... 44
Hardware setup.. 44
Run the Bash Script...45

AN 812: Platform Designer System Design Tutorial Revision History.................................. 46

Contents

AN 812: Platform Designer System Design Tutorial Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer System Design Tutorial
The Platform Designer system integration tool for Intel FPGA and SoC devices
automatically generates interconnect logic to connect intellectual property (IP)
components and subsystems. Using Platform Designer saves time and effort in the
design process. Platform Designer inherits the ease of use of Platform Designer
(Standard). In addition, Platform Designer introduces hierarchical isolation between
system interconnect and IP components. This tutorial is for users who have basic
knowledge of Intel® Quartus® Prime Pro Edition software and Platform Designer
(Standard), and want to experience the new features of Platform Designer.

This tutorial guides you through the following processes:

• Building systems in Platform Designer, and integrating those systems into an Intel
Quartus Prime Pro Edition project.

• Explains the different user flows between Platform Designer (Standard) and
Platform Designer.

• Demonstrates some of the new features of Platform Designer and how it increases
efficiency and flexibility for team-based design.

The procedures in this tutorial provide you with a template to design a system that
uses various test patterns to test an external memory device. The final system
contains the following components:

• A processor subsystem which contains an Intel Nios® II/e core. The subsystem
also includes an on-chip RAM to store the software code and a JTAG UART to
communicate and display the memory test results in the host PC's console.

• A memory tester subsystem to interact with an SDRAM controller.

• The memory tester subsystem consists of a pattern generator subsystem, a
pattern checker subsystem, a memory tester, a pattern writer, and a pattern
reader.

• The pattern generator subsystem consists of a custom pattern generator, a pseudo
random binary sequence (PRBS) pattern generator, along with a multiplexer (MUX)
to select between these two.

• A data pattern checker subsystem consisting of a custom pattern checker, a
pseudo random binary sequence (PRBS) pattern checker, along with a
demultiplexer (DEMUX).

• Pattern writer and pattern reader subsystems that interacts with the SDRAM
controller.

• A SDRAM controller to control the off-chip DDR SDRAM device under test.

683855 | 2018.04.02

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 1. Platform Designer System

Top-Level Platform Designer System

Memory Tester
Data Pattern Generator Memory Master and Controller Data Pattern Checker

Processor
IP Cores

SDRAM
Controller

SDRAM
Under Test

Custom
Pattern
Generator

PRBS
Generator

Pattern
Select
(MUX)

Pattern Writer
Checker

Select
(DEMUX)

Test Controller PRBS
Checker

Custom
Pattern
Checker

Intel®
Nios® II

Onchip
RAM

(Code
and Data)

AvalonMemory Mapped (Avalon-MM) Interface
AvalonStreaming (Avalon-ST) Interface

Pattern Reader

Pipeline
Bridge

JTAG
UART

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are four broad steps in this tutorial:

1. Build a processor subsystem from scratch in Platform Designer.

2. Build a top-level Platform Designer system with memory tester subsystem
instantiated as a generic component.

3. Implement a generic component.

4. Create a Nios II software application and run the design on a FPGA.

Hardware and Software Requirements

This design targets the Intel Arria® 10 GX FPGA Development Kit (with DDR4
daughter card installed). To complete this tutorial, you need the following software
and tools:

• Intel Quartus Prime Pro Edition 17.0 or later

• Nios II EDS (installs with the Intel Quartus Prime Pro Edition software)

• Board Test System (installs with the Intel Arria 10 GX FPGA Development Kit
package)

Related Information

• Intel Quartus Prime Pro Edition Download Page

• Intel Arria 10 GX FPGA Development Kit

• Intel Arria 10 Board Test System

Download and Install the Tutorial Design Files

1. On the Platform Designer Tutorial Design Example page, under Using this
Design Example, click Platform Designer Tutorial Design Example (.zip) to
download and install the tutorial design files for the Platform Designer tutorial.

2. Extract the contents of the archive file to a directory on your computer. Do not use
spaces in the directory path name.

The qsys_pro_tutorial_design_Arria_10_17p0.zip contains the following
project files and is referred to as <project folder> in the rest of the document.

Table 1. Qsys Pro Design Tutorial Project Files

Folder Structure Description

/complete_design The final design. You can use this design as a reference and guidance
while you follow the tutorial. You may also use the prebuilt systems in it
if you want to skip certain steps of this tutorial.

/ip The folder that stores IP component source files. The
pattern_checker_system and pattern_generator_system are
pre-generated for you.

/memory_tester_ip The folder that contains source files for all custom components.

/software This folder contains source code for building Nios II software applications
and two scripts that automate this process for you.

A10.qpf An Intel Quartus Prime Project file (.qpf).

continued...

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

5

http://dl.altera.com/?edition=pro
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/arria/10-gx.html
https://www.altera.com/content/dam/altera-www/global/en_US/support/boards-kits/arria10/FPGA/arria10GX_10ax115sf45_fpga_v15.1.2p1.zip
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Folder Structure Description

A10.qsf An Intel Quartus Prime Settings file (.qsf), containing pre-defined pin
assignments.

memory_tester_search_path.ipx IP Index file (.ipx) that specifies the path to the source files of the
custom components.

memory_tester_subsystem_bb.ipxact The .ipxact file that defines the interfaces for your generic component.

my_constraints.sdc A Synopsys Design Constraints, or SDC, file (.sdc) containing timing
constraints.

pattern_checker_system.qsys Pre-built Platform Designer System file (.qsys).

pattern_generator_system.qsys Pre-built Platform Designer System file (.qsys).

top_level.v Top-level Verilog Design file (.v) .

Related Information

• Platform Designer System Design Example

• Platform Designer System Design Example (.zip)

Build the Hardware Design

Open the Intel Quartus Prime Pro Edition Project

You must specify or create an Intel Quartus Prime Pro Edition project when you create
or open a new Platform Designer system. Platform Designer inherits the device family
or number from the Intel Quartus Prime Pro Edition software, which guarantees the or
Platform Designer coherency. To open the Intel Quartus Prime Pro Edition project:

1. Launch Intel Quartus Prime Pro Edition software.

2. Click File ➤ Open Project.

3. Browse to the project directory.

4. Select A10.qpf and click Open.

The top-level RTL, pin assignments, and timing constraints have been created for you.
The file references and pin assignments are saved in A10.qsf.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

6

https://www.altera.com/support/support-resources/design-examples/design-software/qsys/exm-qsys-tut.html
https://www.altera.com/content/dam/altera-www/global/en_US/others/support/examples/download/qsys_pro_tutorial_design_arria_10_17p0.zip
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Intel Quartus Prime Pro Edition Project

Build a Platform Designer System with a Top-Down Approach

1. To launch Platform Designer, click Tools ➤ Platform Designer.

2. Click the Create new Qsys system button and name the new Platform Designer
system top_system.qsys.

Figure 3. Create New System Dialog Box

Create New System

3. Click Create. The resulting system comes pre-populated with a clock bridge and a
reset bridge.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Right-click the name of the clock_in component and click Rename. Type
ext_clk.

5. In the parameter editor, change the Explicit clock rate to 100MHz (100,000).

6. Right-click the name of the reset_in component and click Rename. Type
ext_reset.

Figure 4. Rename the Clock Bridge and Reset Bridge

Add a Processor Subsystem to the Top-Level

Using subsystems helps maintain design hierarchy. You can add a subsystem in
Platform Designer and easily implement it.

1. Right-click in the System Contents tab and click Add New Subsystem to
Current System.

Figure 5. Add a New Subsystem to the Current System

2. In the Confirm New System Filename dialog box, click the sysA subsystem
and rename it by typing cpu_subsystem.qsys.

3. Click OK.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Confirm New System Filename Dialog Box

4. To rename the instance from sysA_0 to cpu_subsystem, right-click the name of
the new subsystem in System Contents and click Rename. Type
cpu_subsystem.

5. To implement the cpu_subsystem component, right-click the name and click
Drill into Subsystem. Alternatively, you can double-click cpu_subsystem in the
Subsystems folder in the Hierarchy list.

Figure 7. Drill into Subsystem Command to Modify a New Subsystem

This opens cpu_subsystem.qsys as a new Platform Designer project where you
can add components.

Build the Processor Subsystem

To build the cpu_subsystem subsystem, you add IP components from the IP Catalog:

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Type clock in the search box of the IP Catalog and double-click Clock Bridge to
add that component.

2. Type reset in the search box of the IP Catalog and double-click Reset Bridge to
add that component.

3. Right-click the name of the clock bridge and click Rename. Type mem_clk to
rename the clock bridge.

4. Right-click the name of the reset bridge and click Rename. Type mem_reset to
rename the reset bridge.

5. To add a second clock bridge, type clock in the search box of the IP Catalog and
double-click Clock Bridge to add that component.

6. To add a second reset bridge type reset in the search box of the and double-click
Reset Bridge to add that component.

7. Right-click and rename the new clock bridge and reset bridge to cpu_clk and
cpu_reset, respectively.

8. Connect the out_clk signal of mem_clk to the clk signal of mem_reset.

9. Connect the out_clk signal of cpu_clk to the clk signal of cpu_reset.

10. Edit the exported interface by double-clicking the name in the Export column,
from the following table:

Table 2. Export Rename Values

Component Name Description Export Value

mem_clk Clock Input mem_clk

mem_reset Reset Input mem_reset

cpu_clk Clock Input cpu_clk

cpu_reset Reset Input cpu_reset

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Your results should match those in the following figure:

Figure 8. Clock and Reset Components

Add a Nios II Processor

1. Type nios in the search box of the IP Catalog and double-click Nios II
Processor.

2. In the Select an Implementation parameter editor, select the Nios II/e
processor.

3. To add the Nios II/e processor to the design, click Finish.

4. Right-click the name of the Nios II processor component and click Rename. Type
cpu to change the name.

5. In the Export column, double-click the entry corresponding to the Reset Output
for the cpu component and rename it cpu_jtag_debug_reset.

Errors regarding reset and exception slaves can be resolved after you add
connections.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. cpu_subsystem Export Naming

Add RAM, JTAG UART, and Avalon-MM Pipeline Bridge

The final components you'll need to add and configure are an On-Chip RAM, a JTAG
UART, and an Avalon-MM Pipeline Bridge.

1. Type ram in the IP Catalog search box and double-click On-Chip Memory (RAM
or ROM).

2. In the On-Chip Memory (RAM or ROM) parameter editor, in the Size box, set
the Total memory size to 8192 bytes.

3. To add the On-Chip Memory (RAM or ROM) component to your design, click
Finish.

4. Right-click the name of the On-Chip Memory (RAM or ROM) component and
click Rename. Type onchip_ram to change the name.

5. Type jtag uart in the IP Catalog search box and double-click JTAG UART.

6. To add the JTAG UART component to your design with default settings, click
Finish.

7. Right-click the name of the JTAG UART component and click Rename. Type
jtag_uart to change the name.

8. Type pipeline bridge in the IP Catalog search box and double-click Avalon-
MM Pipeline Bridge.

9. In the Avalon-MM Pipeline Bridge parameter editor, change the following
settings:

• Set the Address width to 16.

• Set the Maximum pending read transactions to 1.

10. To add the Avalon-MM Pipeline Bridge to your design, click Finish.

11. Right-click the name of the Avalon-MM Pipeline Bridge component and click
Rename. Type pipeline_bridge to change the name.

12. In the Export column, double-click the entry that corresponds to the m0 signal for
the pipeline_bridge component and type master.

The Avalon-MM Pipeline Bridge allows the processor subsystem cpu_subsystem to
export a single Avalon-MM master interface. Your design can then access the slave
interfaces in a higher-level system, and handle address offsets automatically. The
bridge also improves timing performance.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

All the required components are now included in this subsystem. Compare the settings
in your design with the following figure and make sure your components and exported
interfaces are named correctly.

Figure 10. Export Names for cpu_subsystem Components

Connect cpu_subsystem Components

Connect the component signals below by clicking the dots across from the appropriate
signals, or by right-clicking the signal and choosing from the drop-down menu.

Follow these steps to connect the components:

Figure 11. Illustrated Clock and Reset Component Connections for cpu_subsystem

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3. Component Connections for cpu_subsystem

Source Component/Signal Target Component/Signal

mem_clk/out_clk pipeline_bridge/clk

cpu_clk/out_clk • cpu_reset/clk
• cpu/clk
• onchip_ram/clk1
• jtag_uart/clk

mem_reset/out_reset • cpu/reset
• onchip_ram/reset1
• jtag_uart/reset
• pipleline_bridge/reset

cpu_reset/out_reset • cpu/reset
• onchip_ram/reset1
• jtag_uart/reset
• pipleline_bridge/reset

cpu/data_master • onchip_ram/s1
• jtag_uart/avalon_jtag_slave
• pipleline_bridge/s0

cpu/instruction_master onchip_ram/s1

Compare the finished connections to the following figure:

Figure 12. Component Connections for cpu_subsystem

System Connectivity Error appears in the System Messages tab. To access this
tab, click View ➤ System Messages. The System Connectivity Error occurs
because when the base address of the Avalon-MM slaves are not assigned, which can
cause address overlap.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to assign the Base address to the value shown in the following
figure. Click the “lock” icon to lock the address.

1. In the Base column, click the value for Avalon Memory Mapped Slave
(Description column) of the cpu component and type 12000.

2. Find the Avalon Memory Mapped Slave entry for the onchip_ram component
and type 10000 as the value in the Base column.

3. Find the Avalon Memory Mapped Slave entry for the jtag_uart component and
type 12800 as the value in the Base column.

Figure 13. Base Address Assignments for cpu_subsystem Components

4. To resolve any remaining system connectivity errors, in the System Messages
tab, click Sync All System Info in the bottom of the GUI. This synchronizes the
component instantiations with their .ip files.

5. To resolve errors in the parameterization of the cpu component (the name of the
component is still red), double-click cpu and you can see the Parameterization
Messages in the Parameters tab. Platform Designer separates the messages for
system connectivity and component parameterization, which simplifies the error
and resolution compared to the combined messaging in Platform Designer
(Standard).

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Parameterization Messages

6. In the Vectors tab, set Reset vector memory and Exception vector memory
both to onchip_ram.s1 to resolve the error messages.

7. Click File ➤ Save to save the project. There is no need to generate the RTL for
the Platform Designer system at this time. Click Move up one level of hierarchy
to return to top_level.qsys system.

Figure 15. Move Up One Hierarchy Level
Move Up One Level

Platform Designer and Platform Designer (Standard) Differences

Platform Designer introduces a hierarchical isolation between system interconnect and
IP components by saving the parameters of each IP component in a .ip file under
<project folder>/ip/<Platform Designer system name> and saving of the

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

system interconnect in a .qsys file under <project folder>. The RTL of each .ip
or .qsys file can be generated in isolation as it contains the full information required
to reproduce the state of the RTL. There are no unresolved dependencies between
files.

For example, Platform Designer saves the Nios II processor parameterization in
<project folder>/ip/cpu_subsystem/cpu_subsystem_ nios2_gen2_0.ip,
and the system interconnect in <project folder>/cpu_subsystem.qsys.

Figure 16. File Location for Nios II Processor IP File

Platform Designer and Platform Designer (Standard) differ also differ in how they
handle IP files:

• Platform Designer requires that you include the .qsys file along with a list of .ip
files associated with that Platform Designer project. The Intel Quartus Prime Pro
Edition software manages this for you after you save your Platform Designer
project.

• The older Platform Designer (Standard) tool saves both component instantiation
and system interconnects in a .qsys file. When integrating a Platform Designer
(Standard) system to a Intel Quartus Prime project, you only need to include a
single Intel Quartus Prime IP file (.qip).

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Add External Memory Interface

The next step is to add an Arria 10 External Memory Interfaces component and
use presets to configure the parameters.

The Presets tab displays a list of applications consisting of different protocols and
development kits. You can choose from the list and apply a pre-defined set of
parameters to the selected IP components. The DDR4 component from the list of
Presets implements a pre-configured module. Modify the following parameters to help
meet timing for this design:

1. Type external memory in the IP Catalog search box and double-click Arria 10
External Memory Interfaces to add it to the system.

2. In the Arria 10 External Memory Interfaces parameter editor, select the Arria
10 GX FPGA Development Kit with DDR4 HILO from the Preset library and
click Apply.

Figure 17. Arria 10 External Memory Interfaces Pane

3. In the Clocks section of the General tab, change Memory clock frequency to
800MHz and the PLL reference clock frequency value to 100MHz.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Memory Tab

4. Click the Memory tab and specify the following:

• Change the DQ width to 32.

• Turn off Read DBI.

• Select '0' from the DQS group of ALERT# list.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Diagnostics Tab

5. Click the Diagnostics tab and specify the following:

• Turn on Skip address/command leveling calibration.

• Turn on Skip address/command deskew calibration.

6. Click Finish.

7. Right-click the name of the top_system_emif_0 component and click Rename.
Type emif_0.

8. In the Export column, double-click the mem, oct, and status conduit interfaces
and rename them emif_0_mem, emif_0_oct, and emif_0_status,
respectively.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Export Names for emif_0 Signals

Instantiate a Memory Tester Subsystem as a Generic Component

At this stage of memory tester subsystem design, you can use Platform Designer to
assemble the whole design to verify and debug components such as the Nios II logic
resource usage and DDR4 Calibration.

You can instantiate the memory tester subsystem as a generic component (an empty
entity with only interfaces defined). When integrating a memory tester subsystem
with a processor subsystem and an EMIF controller only the interfaces of the memory
tester subsystem are significant.

Instantiation of a generic component does not prevent the completion of other parts of
the design. This feature provides a lot of flexibility in the design, and is especially
beneficial for large and team-based designs. You need only verify that, when adding
the entity implementation, the entity interfaces match the interfaces defined for the
generic component.

To instantiate a generic component:

1. In the IP Catalog, double-click Generic Component.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. IP Catalog Generic Component

The Component Instantiation tab contains three implementation types: IP,
HDL, and Blackbox. When you add a generic component, Blackbox is the
default.

2. Change the HDL entity name and HDL compilation library to
memory_tester_subsystem.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Component Instantiation Tab for memory_tester_subsystem Generic
Component

3. To add the component, click Finish.

4. Right-click the name of the top_system_generic_component_0 component
and click Rename. Type memory_tester_subsystem.

Note: When implementing a generic component with the Blackbox option, you don’t have
to provide the HDL implementation during component instantiation. Simply customize
the interfaces and signals and generate an empty HDL file. Then, connect the generic
component to other components in Platform Designer, generate interconnects, and
finally, compile the project with this empty entity. When you finish the implementation
of the generic component, simply replace the generic component with the actual
implementation to complete the design. In other words, the generic component
functions as a placeholder for the actual component you plan to use.

Platform Designer provides many features to help you add interfaces and signals for a
generic component. The following steps, 1-11, showcase how to add signals manually,
by using Mirror or Clone, and how to change parameters. In the final steps, you are
going to import a complete interface definition from an .ipxact file.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer provides many ways to help you add interfaces easily and
efficiently.

1. Click View ➤ Component Instantiation.

2. Select the memory_tester_subsystem component. The instantiation
information appears in the Component Instantiation tab.

3. Click the Signals & Interfaces tab. You can add interfaces manually, Import
from an IP-XACT file, Mirror, or Clone from existing interfaces in the system.

4. Click << add interface>> and select Clock Input from the drop down list.

5. To change the name of the interface, in the Name field, type clk.

6. Click <<add signal>> and choose clk.

7. Repeat steps 4-6 to add a Reset Input interface and signal, and rename it
reset.

8. Click Apply.

Figure 23. Signal and Interface Options for memory_tester_subsystem

Apart from clock and reset, the design also requires an Avalon-MM slave
interface to communicate with the processor subsystem. It could be tedious to add
Avalon-MM slave interface manually since there are address bus, data bus, and
many other parameter settings to configure. An easier way is to use the Mirror
feature.

9. Click Mirror and choose the master interface of cpu_subsystem to add a slave
interface.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Create Mirror of Interface 'master'

10. You can resolve the errors that appear in the Instantiation Messages box by
assigning Associated Clock and Associated Reset to the clk and reset
interfaces in the parameter editor.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11. Locate the Maximum pending read transactions box under Pipelined
Transfers and change that value to 4.

12. Click Import and choose memory_tester_subsystem_bb.ipxact to add the
interfaces.

13. To complete the import step, click Apply.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Results of Importing memory_tester_subsystem_ bb.ipxact

Click the Implementation tab to create a Platform Designer template with
interface requirements setup to implement the memory tester subsystem. You can
also create an HDL template with ports defined.

14. Click Create Platform Designer System Template ➤ Save to create the
memory_tester_ subsystem.qsys file in the <project folder>.

15. Click Create HDL Template ➤ Save to create the memory_tester_
subsystem.v file in the <project folder>.

The Export tab allows you to export the interfaces and requirements to an .ipxact
or a _hw.tcl file, however, this feature is not used in this project.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Create Platform Designer System Template and HDL Template Options

Related Information

Implement the Memory Tester Subsystem on page 31

Connect and Generate IP Files

You can make connections once the component instantiation is complete. Connect the
source and target components with the entries in the following table:

Table 4. Top Level Platform Designer Connections

Source Component/Signal Target Component/Signal

ext_clk/out_clk • ext_reset/clk
• cpu_subsystem/cpu_clk
• emif_0/pll_ref_clk

ext_reset/out_reset • cpu_subsystem/cpu_reset
• cpu_subsystem/mem_reset
• memory_test_subsystem/reset
• emif_0/global_reset_n

cpu_subsystem/master • memory_test_subsystem/slave

cpu_subsystem/cpu_jtag_reset • cpu_subsystem/cpu_reset
• cpu_subsystem/mem_reset
• memory_test_subsystem/reset
• emif_0/global_reset_n

memory_test_subsystem/read_master • emif_0/ctrl_amm_0

memory_test_subsystem/write_master • emif_0/ctrl_amm_0

emif_0/emif_usr_clk • cpu_subsystem/mem_clk
• memory_test_subsystem/clk

emif_0/emif_usr_reset_n • cpu_subsystem/mem_reset

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compare your completed system to the following figure:

Figure 27. Top Level Platform Designer System Connections

If there are any errors, read the error message and fix the error.

1. Click File ➤ Save to save the top-level system.

2. Click Generate ➤ Generate HDL and click Generate to generate RTL for each
component, including components in the cpu_subsystem.

3. Close Platform Designer. New files appear in the in the Project Navigator ➤
Files tab in the Intel Quartus Prime project. You must add another file
memory_tester_subsystem.v. Adding this provides an empty entity for
memory_tester_subsystem so Intel Quartus Prime Pro Edition can elaborate
the hierarchy.

4. In the Tasks window, double-click Add/Remove Files in Project to open the
Settings dialog box.

5. To add an empty memory_tester_subsystem.v file, type
memory_tester_subsystem.v in the File name box.

6. Click Add.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. top_system.qsys IP Files

7. Compile the project by clicking Processing ➤ Start Compilation. If there are
any errors, verify that all required files are present, and that you correctly name
the exported ports in the Platform Designer system.

After compilation completes successfully, check the Compilation Reports (Processing
➤ Compilation Report) for Logic Resource Usage, I/O Bank Usage, Clock tree.
You can also upload the A10.sof file generated during compilation to a board to
check the calibration status of the DDR4 RAM. In the top_level.v file,
sdram_cal_success, and sdram_cal_fail are connected to LED3 on the board. A
green light indicates that calibration was successful. A red light indicates that
calibration failed.

This design flow allows you to verify and debug DDR4 RAM calibration, while
maintaining the system structure, before finishing the implementation of the memory
tester subsystem.

Examples of Platform Designer Generic Components

You can instantiate components in Platform Designer using generic components.

Generic components fall into one of the three implementation types: IP, HDL, or
Blackbox. Each type is selectable by the corresponding button in the Component
Instantiation tab. All the _hw.tcl based IP components found in the IP Catalog,
such as On-chip Memory and External Memory Interfaces (EMIF), belong to the IP
type. If you want to add a custom component written in RTL, you can use the HDL
type and link the source files in the Component Instantiation tab.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Example of an IP Component Instantiation

Implement the Memory Tester Subsystem

Next, you implement the memory tester subsystem (previously instantiated as a
generic component) using the Platform Designer template.

You typically perform this process as a member of a remote team with a need to
implement the memory tester subsystem. The remote team member receives a .qsys
file which serves as the requirement hand off for an implementation. This .qsys file
contains the details needed for designing a block for the larger design, without access
to the top level.

To implement the memory tester subsystem you must add components from the IP
Catalog to this Platform Designer project, make connections, and export interfaces to
match what is defined for the generic component. Once those processes are complete,
replace the generic component in the top level system with this subsystem
implementation.

To implement the subsystem, complete the following steps:

1. To launch Platform Designer, click Tools ➤ Platform Designer.

2. Browse to the memory_tester_subsystem.qsys file and click Open.

Platform Designer opens and displays an empty project. However, it embeds the
interface requirements you defined in the generic component representation
within the top level system used as a guide to implement this subsystem.

3. To view these interfaces, click View ➤ Interface Requirements.

The left column shows the interfaces instantiated in the current Platform Designer
(Standard) Pro system. The right column shows the requirements you define in
previous steps. Since there are no components or exported interfaces, all the
interface names are highlighted in green, denoting missing items.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Interface Requirements Dialog Box

Add Clock, Reset, and Avalon-MM components

In order to resolve missing items in the Interface Requirements list, add a clock
bridge, reset bridge, and Avalon-MM pipeline bridge first:

1. In the IP Catalog, type clock in the search box and double-click Clock Bridge.

2. Click Finish to add the clock bridge.

3. Type reset in the search box and double-click Reset Bridge.

4. Click Finish to add the reset bridge.

5. In the System Components tab, right-click the name of the clock bridge and click
Rename. Type clk.

6. In the System Components tab, right-click the name of the reset bridge and click
Rename. Type reset.

7. In the Export column, double-click the entry corresponding to the clock input
for the clk component and rename it clk.

8. In the Export column, double-click the entry corresponding to the reset input
for the reset component and rename it reset.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Type pipeline in the IP Catalog search box and double-click Avalon-MM
Pipeline Bridge.

10. When the Avalon-MM Pipeline Bridge parameter editor opens, in Address , set
the Address width to 13.

11. To add the component, click Finish.

12. Right-click the name of the Avalon-MM Pipeline Bridge and click Rename. Type
mm_bridge.

Add Pre-Built Systems and Memory Test Microcore Components

The files listed in the Design Files topic contain two pre-built systems: a pattern
checker system, and a pattern generator system. These pre-built Platform Designer
systems appear in the IP Catalog in the System folder. The IP Catalog also contains a
list of available Memory Test Microcores. The source files of these custom IP cores are
located in <project folder>/memory_tester_ip. The
memory_tester_search_path.ipx file included in the project provides this path to
Platform Designer.

Figure 31. IP Catalog Memory Test Microcore and System Components

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To add these pre-built Platform Designer systems, complete the following steps:

1. In the IP Catalog, expand the System folder and double-click
pattern_checker_system to add the pattern checker component.

2. To add the component, click Finish.

3. To rename the pattern checker, right-click the system in the Name column and
type pattern_checker_subsystem.

4. In the IP Catalog, double-click pattern_generator_system to add the prebuilt
pattern generator component.

5. To add the component, click Finish.

6. To rename the pre-built pattern generator, right-click the system in the Name
column and type pattern_generator_subsystem.

7. In the IP Catalog, expand the Memory Test Microcores folder, and double-click
Pattern Writer.

8. In the Pattern Writer parameter editor, turn on Burst Enable.

9. To add the component, click Finish.

10. To rename the pattern writer component, right-click the system in the Name
column and type pattern_writer.

11. In the IP Catalog, double-click Pattern Reader.

12. In the Pattern Reader parameter editor, turn on Burst Enable.

13. Click Finish to add the component.

14. In the IP Catalog, double-click to begin adding a RAM Test Controller.

15. Click Finish to add the component.

Related Information

Download and Install the Tutorial Design Files on page 5

Export Signals, Set Base Address Assignments, and Connect Memory Tester
Interface Components

To export signals, set base address assignments, and connect components, perform
the following steps:

1. To export the Avalon Memory Mapped Master interface for Pattern Writer, in
the Export column double-click the row adjacent to the Avalon Memory
Mapped Master and type write_master.

2. To export the Avalon Memory Mapped Master interface for Pattern Reader, in
the Export column, double-click the row adjacent to the Avalon Memory
Mapped Master and type read_master.

3. Make connections for the system based on the following table:

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 5. Memory Tester Interface Component Connections

Source Compont/Signal Target Component/Signal

clk/out_clk • reset/clk
• mm_bridge/clk
• pattern_generator_subsystem/clk
• pattern_checker_subsystem/clk
• pattern_writer/clock
• pattern_reader/clock
• ram_test_controller/clock

reset/out_reset • mm_bridge/reset
• pattern_generator_subsystem/reset
• pattern_checker_subsystem/reset
• pattern_writer/reset
• pattern_reader/reset
• ram_test_controller/reset

mm_bridge/m0 • pattern_generator_subsystem/slave
• pattern_checker_subsystem/slave
• ram_test_controller/csr

pattern_generator_subsystem/st_data_out • pattern_writer/st_data

pattern_reader/st_data • pattern_checker_subsystem/st_data_in

ram_test_controller/read_command • pattern_reader/command

ram_test_controller//write command • pattern_writer/command

4. Assign base addresses for Avalon Memory Mapped Slave interfaces:

a. In the Base column, click the value for slave signal of the
pattern_generator_subsystem component and type 0000.

b. In the Base column, click the value for slave signal of the
pattern_checker_subsystem component and type 1000.

c. In the Base column, click the value for csr signal of the
ram_test_controller component and type 800.

The following figure shows the completed system:

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Connections and Base Address Values for the memory_tester_sybsystem

Resolve Interface Requirements and Value Mismatches

In the Interface Requirements tab you can verify that the exported interfaces meet
the interface requirements.

1. Click the Interface Requirements tab in Platform Designer.

The exported interfaces in the tutorial system appear in the Current System list.
The Interface Requirements list shows the definition of the generic component.
A green highlight indicates a missing item. A blue highlight indicates an item with
parameter mismatches.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Missing Components and Value Mismatches

2. View the Interface Requirements list for missing items. What appears in the
figure indicates a missing slave interface of the pipeline bridge. Fix the missing
items by exporting the appropriate signal.

3. In the System Contents tab, double-click the entry in the Export column
corresponding to the s0 for the mm_bridge component and rename it to slave.

Figure 34. Export and Rename Avalon-MM Slave

Export Signal Name

4. Re-examine the Interface Requirements tab. The Current System list contains
the slave interface with no green highlight. Next you resolve the different item
highlighted in blue.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Current System / Interface Requirement Value Mismatch

5. Click the signal name highlighted in blue to display more information in the
Parameter Differences pane. Typically, you change the Current System Value
to match the Interface Requirement Value by editing the parameters of that
component.

Figure 36. Changing Current System Value

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Click read_master_readdata[32] and examine the Parameter Differences
pane. In the top_system, the data width of the Avalon Memory Mapped
Master of the EMIF controller is 256. The data width of the
memory_tester_subsystem must match with a value of 256. Adapters inserted
to handle data width mismatch may become the bottle-neck of a design.

7. This exported interface comes from the Pattern Writer. To alter its width, alter the
parameters of that IP core. To change the data width of Pattern Writer, double-
click the pattern_writer component. Change the Data Width in the parameter
editor to 256.

Figure 37. Pattern Writer Settings Dialog Box

Repeat the Step 7 for the pattern_reader component.

Figure 38. Pattern Reader Settings Dialog Box

These parameter changes alter the width of *_byteenable signals accordingly.

8. Verify that your Interface Requirements tab contains no missing items or
mismatched items. In cases where you want to keep the current system value,
you can click the Copy button to copy items from the left table to the right.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Completed Interface Requirements

This completes the editing of component parameters to validate interface
requirements.

9. Save and close the project. There is no requirement to generate HDL because we
are replacing the generic component in top_system.qsys with the implemented
subsystem.

10. Close Platform Designer and inspect the Files tab in the Project Navigator. Files
for the memory_tester_subsystem are present in the Intel Quartus Prime Pro
Edition project.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Files List for memory_tester_subsystem.v

Replace the memory_tester_subsystem Generic Component

Next, replace the generic component with the memory_tester_subsystem
implementation:

1. Click Tools ➤ Platform Designer to launch Platform Designer. Browse to the
top_system.qsys file and click Open.

2. Right-click the memory_tester_subsystem component and click Remove.

3. In the IP Catalog, browse to the System folder and double-click to
memory_tester_subsystem. Keep the same name and update the connections.

4. Right-click the name of the top_system_subsystem_0 and click Rename. Type
memory_tester_subsystem.

5. Verify and complete connections based on the following table:

Source Component/Signal Target Component/Signal

ext_clk/out_clk • ext_reset/clk
• cpu_subsystem/cpu_clk
• emif_0/pll_ref_clk

ext_reset/out_reset • cpu_subsystem/cpu_reset
• cpu_subsystem/mem_reset
• memory_tester_subsystem/reset
• emif_0/global_reset_n

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Source Component/Signal Target Component/Signal

cpu_subsystem/cpu_jtag_debug_reset • cpu_subsystem/cpu_reset
• cpu_subsystem/mem_reset
• memory_tester_subsystem/reset
• emif_0/global_reset_n

cpu_subsystem/master • memory_tester_subsystem/slave

memory_tester_subsystem/read_master • emif_0/ctrl_amm_0

memory_tester_subsystem/write_master • emif_0/ctrl_amm_0

emif_0/emif_usr_clk • cpu_subsystem/mem_clk
• memory_tester_subsystem/clk

emif_0/emif_usr_reset_n • cpu_subsystem/mem_reset

6. Compare the connections to the following figure:

Figure 41. memory_tester_subsystem Implementation Connections

7. Click File ➤ Save.

8. Click Generate ➤ Generate HDL.

9. Click Generate.

10. Close the current Platform Designer project when generation is done.

The files in included with this design are Verilog (.v) files, but you can also use VHDL
(.vhdl) in your design if you prefer.

Synchronize IP Results

When you synchronize IP files, Platform Designer checks IP file references.

1. In the Intel Quartus Prime Pro Edition, click Files in the Project Navigator and
browse to memory_tester_subsystem.v.

2. Delete the empty entity RTL memory_tester_subsystem.v since we now have
the actual memory_tester_subsystem implementation.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The files included in memory_tester_subsystem are not complete though. We
are missing IP components in the pattern generator system and pattern checker
system.

3. Open the pattern_generator_system.qsys and
pattern_checker_system.qsys in Platform Designer and save them without
generating HDL. This designates the IP components in these systems for
elaboration during compilation.

Each time you open a Platform Designer project, Platform Designer automatically
checks the IP file references and opens a dialog box if there is any mismatch. In
the following figure, IP Synchronization detects the Platform Designer system
includes these IP, but the Intel Quartus Prime Pro Edition project does not. This
dialog box informs you when you must add these files to the project..

Figure 42. IP Synchronization Dialog Box

4. Click OK and the Intel Quartus Prime Pro Edition synchronizes the file references.

5. Examine the Project Navigator and these new files appear:

Figure 43. Files Added through IP Synchronization

6. Click Processing ➤ Start Compilation to compile the project. The Intel Quartus
Prime Pro Edition software may return missing file errors, for example:

"Instance ‘ abc|def|ghi ’ instantiates undefined entity ‘ xyz ’ "

This type of error is caused when an expected IP file is missing. Resolve it by
adding the xyz.ip file to the project.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Build Software Applications and Download the Design

The final steps in this tutorial show how to download your design onto a Dev Kit
board.

Hardware setup

First, you reprogram the clock generator chip on the board.

The default clock resource in this design runs at 133.33 MHz. Program the clock to run
at 100 MHz.

1. Connect the board to the host PC with a USB cable and apply power to the board.

2. Run the ClockController.exe executable that installs with the Dev Kit
package. This executable installs to <package installation folder>/
examples/board_test_system by default.

3. Click the Si5338(U26) tab.

4. Change the frequency setting for CLK3 to 100MHz.

5. Click Set.

Figure 44. Clock Controller Settings

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Hardware and Software Requirements on page 5

Run the Bash Script

Nios II EDS enables you to build board support packages (device drivers, HAL) and
applications based on the top_system.sopcinfo file, an output file of
top_system.qsys generation.

1. Copy top_system.sopcinfo from /top_system to /<project folder>.

2. To launch the Nios II Command Shell from Platform Designer, click Tools ➤
Nios II Command Shell (gcc4).

3. In the Nios II Command Shell, browse to <project folder>/software, and
run batch_script.sh.

Figure 45. Run the nios2_command_shell.sh

The batch_script.sh script calls commands in Nios II EDS to build a board support
package and applications. The script then configures the FPGA with the A10.sof file
that you generate during Intel Quartus Prime software compilation, runs the software
applications, and establishes a terminal connection with the board. The test software
performs test sweeps, such as Walking Ones, Walking Zeros, and PRBS, on the SDRAM
and the output values appear in the command terminal.

Platform Designer System Design Tutorial

683855 | 2018.04.02

Send Feedback AN 812: Platform Designer System Design Tutorial

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. Terminal Connection Console

The <project folder>/software folder contains a rerun.sh script. You can run
this script when you already have the Nios II board support package and applications
built, and don’t need to build them again. This script downloads only the .sof file and
runs Nios II applications.

AN 812: Platform Designer System Design Tutorial Revision History

Document
Version

Changes

2018.04.02 Updated for terminology change from Qsys Pro to Platform Designer.

2018.05.04 Updated

2017.08.15 Initial release.

Platform Designer System Design Tutorial

683855 | 2018.04.02

AN 812: Platform Designer System Design Tutorial Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20812:%20Platform%20Designer%20System%20Design%20Tutorial%20(683855%202018.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	AN 812: Platform Designer System Design Tutorial
	Contents
	Platform Designer System Design Tutorial
	Hardware and Software Requirements
	Download and Install the Tutorial Design Files
	Build the Hardware Design
	Open the Intel Quartus Prime Pro Edition Project
	Build a Platform Designer System with a Top-Down Approach
	Add a Processor Subsystem to the Top-Level
	Build the Processor Subsystem
	Add a Nios II Processor
	Add RAM, JTAG UART, and Avalon-MM Pipeline Bridge
	Connect cpu_subsystem Components
	Platform Designer and Platform Designer (Standard) Differences

	Add External Memory Interface
	Instantiate a Memory Tester Subsystem as a Generic Component
	Connect and Generate IP Files
	Examples of Platform Designer Generic Components

	Implement the Memory Tester Subsystem
	Add Clock, Reset, and Avalon-MM components
	Add Pre-Built Systems and Memory Test Microcore Components
	Export Signals, Set Base Address Assignments, and Connect Memory Tester Interface Components
	Resolve Interface Requirements and Value Mismatches
	Replace the memory_tester_subsystem Generic Component
	Synchronize IP Results

	Build Software Applications and Download the Design
	Hardware setup
	Run the Bash Script

	AN 812: Platform Designer System Design Tutorial Revision History

