
Intel® FPGA SDK for OpenCL™ Pro
Edition
Best Practices Guide

Updated for Intel® Quartus® Prime Design Suite: 22.4

Online Version

Send Feedback UG-OCL003

ID: 683521

Version: 2022.12.19

https://www.intel.com/content/www/us/en/docs/programmable/683521/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide............. 5
1.1. FPGA Overview..5
1.2. Pipelines...7
1.3. Single Work-Item Kernel versus NDRange Kernel... 9

2. Reviewing Your Kernel's report.html File.. 15
2.1. High-Level Design Report Layout..15
2.2. Reviewing the Summary Report... 16
2.3. Viewing Throughput Bottlenecks in the Design... 18
2.4. Using Views.. 19

2.4.1. Features of the System Viewer...19
2.4.2. Features of the Kernel Memory Viewer ... 26
2.4.3. Features of the Schedule Viewer.. 31

2.5. Analyzing Throughput...32
2.5.1. Reviewing Loop Information.. 33

2.6. Reviewing Area Information.. 36
2.6.1. Area Report Message for Board Interface.. 38
2.6.2. Area Report Message for Function Overhead.. 38
2.6.3. Area Report Message for State...38
2.6.4. Area Report Message for Feedback... 38
2.6.5. Area Report Messages for Private Variable Storage....................................... 38

2.7. Optimizing an OpenCL Design Example Based on Information in the HTML Report........ 40
2.8. Accessing HLD FPGA Reports in JSON Format...49

3. OpenCL Kernel Design Concepts... 51
3.1. Kernels...51
3.2. Global Memory Interconnect..52
3.3. Local Memory..54

3.3.1. Changing the Memory Access Pattern Example...61
3.4. Loops in a Single Work-Item Kernel.. 66

3.4.1. Trade-Off Between Initiation Interval and Maximum Frequency...................... 67
3.4.2. Loop-Carried Dependencies that Affect the Initiation Interval of a Loop........... 68
3.4.3. Nested Loops.. 70
3.4.4. Loop Speculation... 78
3.4.5. Loop Fusion...80
3.4.6. Loop Bottlenecks... 81

3.5. Channels.. 84
3.6. Load-Store Units..85

3.6.1. Load-Store Unit Types.. 85
3.6.2. Load-Store Unit Modifiers..87
3.6.3. Controlling the Load-Store Units.. 89
3.6.4. When to Use Each LSU... 90

4. OpenCL Kernel Design Best Practices..92
4.1. Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes................92

4.1.1. Characteristics of Channels and Pipes... 93
4.1.2. Execution Order for Channels and Pipes.. 95
4.1.3. Optimizing Buffer Inference for Channels or Pipes.. 96

Contents

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.4. Best Practices for Channels and Pipes... 97
4.2. Unrolling Loops..97
4.3. Optimizing Floating-Point Operations.. 99

4.3.1. Floating-Point versus Fixed-Point Representations.......................................101
4.4. Allocating Aligned Memory.. 102
4.5. Aligning a Struct with or without Padding.. 103
4.6. Maintaining Similar Structures for Vector Type Elements..105
4.7. Avoiding Pointer Aliasing... 105
4.8. Avoid Expensive Functions...106
4.9. Avoiding Work-Item ID-Dependent Backward Branching.. 107

5. Profiling Your Kernel to Identify Performance Bottlenecks... 108
5.1. Best Practices for Profiling Your Kernel.. 109
5.2. Instrumenting the Kernel Pipeline with Performance Counters (-profile).....................109
5.3. Obtaining Profiling Data During Runtime..110

5.3.1. Invoking the Profiler Runtime Wrapper ... 110
5.3.2. Viewing Profiling Data Using Intel VTune™ Profiler.......................................111

5.4. Reducing Area Resource Use While Profiling... 112
5.5. Temporal Performance Collection..112

5.5.1. Profiling Autorun Kernels...113
5.6. Performance Data Types..114
5.7. Interpreting the Profiling Information..114

5.7.1. Stall, Occupancy, Bandwidth.. 115
5.7.2. Stalling Channels... 116
5.7.3. Channel Depths... 117

5.8. Profiler Analyses of Example OpenCL Design Scenarios ...117
5.8.1. High Stall Percentage..117
5.8.2. Low Occupancy Percentage..118
5.8.3. High Stall and High Occupancy Percentages... 118
5.8.4. No Stalls, Low Occupancy Percentage, and Low Bandwidth.......................... 119
5.8.5. No Stalls, High Occupancy Percentage, and Low Bandwidth..........................120
5.8.6. High Stall and Low Occupancy Percentages..121

5.9. Intel FPGA Dynamic Profiler for OpenCL Limitations.. 121

6. Strategies for Improving Single Work-Item Kernel Performance................................ 123
6.1. Addressing Single Work-Item Kernel Dependencies Based on Optimization Report

Feedback..123
6.1.1. Removing Loop-Carried Dependency...124
6.1.2. Relaxing Loop-Carried Dependency...127
6.1.3. Transferring Loop-Carried Dependency to Local Memory.............................. 129
6.1.4. Relaxing Loop-Carried Dependency by Inferring Shift Registers.................... 130
6.1.5. Removing Loop-Carried Dependencies Caused by Accesses to Memory Arrays 132

6.2. Good Design Practices for Single Work-Item Kernel...134

7. Strategies for Improving NDRange Kernel Data Processing Efficiency........................ 137
7.1. Specifying a Maximum Work-group Size or a Required Work-Group Size.................... 137
7.2. Kernel Vectorization..139
7.3. Multiple Compute Units... 140

7.3.1. Compute Unit Replication versus Kernel SIMD Vectorization......................... 141
7.4. Combination of Compute Unit Replication and Kernel SIMD Vectorization................... 143
7.5. Reviewing Kernel Properties and Loop Unroll Status in the HTML Report.................... 144

Contents

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Strategies for Improving Memory Access Efficiency..145
8.1. General Guidelines on Optimizing Memory Accesses..146
8.2. Optimize Global Memory Accesses..146

8.2.1. Contiguous Memory Accesses.. 148
8.2.2. Manual Partitioning of Global Memory... 149
8.2.3. Optimizing for Two or More Banks of Global Memory................................... 150

8.3. Performing Kernel Computations Using Constant, Local or Private Memory................. 151
8.3.1. Constant Cache Memory... 151
8.3.2. Preloading Data to Local Memory..151
8.3.3. Storing Variables and Arrays in Private Memory..153

8.4. Improving Kernel Performance by Banking the Local Memory................................... 154
8.4.1. Optimizing the Geometric Configuration of Local Memory Banks Based on

Array Index... 156
8.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor.... 157
8.6. Minimizing the Memory Dependencies for Loop Pipelining.. 159
8.7. Static Memory Coalescing..160

9. Strategies for Optimizing FPGA Area Usage.. 162
9.1. Compilation Considerations... 162
9.2. Board Variant Selection Considerations... 162
9.3. Memory Access Considerations...163
9.4. Arithmetic Operation Considerations... 164
9.5. Data Type Selection Considerations.. 165

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs....................................... 166
10.1. Reducing Channel Overhead.. 166

10.1.1. Reducing the Number of Kernels...166
10.1.2. Using a Single Kernel to Describe Systolic Arrays...................................... 167
10.1.3. Using Non-Blocking Channels... 168

10.2. Optimizing Loop Control.. 169
10.2.1. Simplifying Loop-Carried Dependencies in Intel Stratix 10 OpenCL Designs.. 171

10.3. Simplifying Memory Access to Local Memories..172
10.4. On-Chip Storage of Reused Data.. 173
10.5. Optimizing Data Path Control .. 174
10.6. Creating RTL Modules... 177

10.6.1. Reset Recommendations..178

11. Strategies for Improving Performance in Your Host Application............................... 180
11.1. Multi-Threaded Host Application... 180
11.2. Utilizing Hardware Kernel Invocation Queue... 181

11.2.1. Double Buffered Host Application Utilizing Kernel Invocation Queue.............183

12. Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide Archives......................185

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best
Practices Guide..186

Contents

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro
Edition Best Practices Guide

The Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide provides guidance
on leveraging the functionalities of the Intel FPGA Software Development Kit (SDK) for
OpenCL(1) to optimize your OpenCL(2) applications for Intel FPGA products.

This document assumes that you are familiar with OpenCL concepts and application
programming interfaces (APIs), as described in the OpenCL Specification version 1.0
by the Khronos Group. It also assumes that you have experience in creating OpenCL
applications.

To achieve the highest performance of your OpenCL application for FPGAs, familiarize
yourself with details of the underlying hardware. In addition, understand the compiler
optimizations that convert and map your OpenCL application to FPGAs.

For more information about the OpenCL Specification version 1.0, refer to the OpenCL
Reference Pages on the Khronos Group website. For detailed information on the
OpenCL APIs and programming language, refer to the OpenCL Specification version
1.0.

Tip: If you are looking for guidance on leveraging the functionalities of Data Parallel C++
(DPC++) to optimize your FPGA designs, then refer to the FPGA Optimization Guide
for Intel oneAPI Toolkits.

Related Information

• OpenCL Reference Pages

• OpenCL Specification version 1.0

1.1. FPGA Overview

Field-programmable gate arrays (FPGAs) are integrated circuits that you can configure
repeatedly to perform an infinite number of functions.

An FPGA consists of several small computational units. Custom datapaths can be built
directly into the fabric by programming the compute units and connecting them as
shown in the following figure. Data flow is programmed directly into the architecture.

(1) The Intel FPGA SDK for OpenCL is based on a published Khronos Specification, and has passed
the Khronos Conformance Testing Process. Current conformance status can be found at
www.khronos.org/conformance.

(2) OpenCL and the OpenCL logo are trademarks of Apple Inc. and used by permission of the
Khronos Group™.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://www.khronos.org/conformance/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 1. FPGA Architecture

With FPGAs, low-level operations like bit masking, shifting, and addition are all
configurable. Also, you can assemble these operations in any order. To implement
computation pipelines, FPGAs integrate combinations of lookup tables (LUTs),
registers, on-chip memories, and arithmetic hardware (for example, digital signal
processor (DSP) blocks) through a network of reconfigurable connections. As a result,
FPGAs achieve a high level of programmability. LUTs are responsible for implementing
various logic functions. For example, reprogramming a LUT can change an operation
from a bit-wise AND logic function to a bit-wise XOR logic function.

The key benefit of using FPGAs for algorithm acceleration is that they support wide,
heterogeneous and unique pipeline implementations. This characteristic is in contrast
to many different types of processing units such as symmetric multiprocessors, DSPs,
and graphics processing units (GPUs). In these types of devices, parallelism is
achieved by replicating the same generic computation hardware multiple times. In
FPGAs, however, you can achieve parallelism by duplicating only the logic that your
algorithm exercises.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A processor implements an instruction set that limits the amount of work it can
perform each clock cycle. For example, most processors do not have a dedicated
instruction that can execute the following C code:

E = (((A + B) ^ C) & D) >> 2;

Without a dedicated instruction for this C code example, a CPU, DSP, or GPU must
execute multiple instructions to perform the operation. In contrast, you may think of
an FPGA as a hardware platform that can implement any instruction set that your
software algorithm requires. You can configure an FPGA to perform a sequence of
operations that implements the code example above in a single clock cycle. An FPGA
implementation connects specialized addition hardware with a LUT that performs the
bit-wise XOR and AND operations. The device then uses its programmable connections
to perform a right shift by two bits without consuming any hardware resources. The
result of this operation then becomes a part of subsequent operations to form complex
pipelines.

1.2. Pipelines

In a pipelined architecture, input data passes through a sequence of stages. Each
stage performs an operation that contributes to the final result, such as memory
operation or calculation.

The designs of microprocessors, digital signal processors (DSPs), hardware
accelerators, and other high performance implementations of digital hardware often
contain pipeline architectures.

For example, the diagram below represents the following example code fragment as a
multistage pipeline:

for (i = 0; i < 1024; i++)
{
 y[i] = (a[i] + b[i] + c[i] + d[i] + e[i] + f[i] + g[i] + h[i]) >> 3;
}

Figure 2. Example Multistage Pipeline Diagram

Add AddAddAddAddAddAdd Shift
by 3

a[i]

y[i]

h[i]g[i]f[i]e[i]d[i]c[i]b[i]

Pipeline Stage
1 8765432

For i = 0...1023

With a pipelined architecture, each arithmetic operation passes into the pipeline one at
a time. Therefore, as shown in the diagram above, a saturated pipeline consists of
eight stages that calculate the arithmetic operations simultaneously and in parallel. In
addition, because of the large number of loop iterations, the pipeline stages continue
to perform these arithmetic instructions concurrently for each subsequent loop
iteration.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel FPGA SDK for OpenCL Pipeline Approach

A new pipeline is constructed based on your design. As a result, it can accommodate
the highly configurable nature of FPGAs.

Consider the following OpenCL code fragment:

C = (A >> 5) + B;
F = (D – E) << 3;
G = C + F;

You can configure an FPGA to instantiate a complex pipeline structure that executes
the entire code simultaneously. In this case, the SDK implements the code as two
independent pipelined entities that feed into a pipelined adder, as shown in the figure
below.

Figure 3. Example of the SDK's Pipeline Approach

Subtraction Shift Right by 5

Shift Left by 3 Addition

Addition

D E A B

F C

G

The Intel FPGA SDK for OpenCL Offline Compiler provides a custom pipeline structure
that speeds up computation by allowing operations within a large number of work-
items to occur concurrently. The offline compiler can create a custom pipeline that
calculates the values for variables C, F and G every clock cycle, as shown below. After
a ramp-up phase, the pipeline sustains a throughput of one work-item per cycle.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. An FPGA Pipeline with Three Operations Per Clock Cycle

543210

G

C

F

Time in Clock Cycles

(A0 >> 5) + B0 (A1 >> 5) + B1 (A2 >> 5) + B2 (A3 >> 5) + B3 (A4 >> 5) + B4 (A5 >> 5) + B5

(D0 - E0) << 3 (D1 - E1) << 3 (D2 - E2) << 3 (D3 - E3) << 3 (D4 - E4) << 3 (D5 - E5) << 3

C0 + F0 C1 + F1 C2 + F2 C3 + F3 C4 + F4

A traditional processor has a limited set of shared registers. Eventually, a processor
must write the stored data out to memory to allow more data to occupy the registers.
The offline compiler keeps data "live" by generating enough registers to store the data
for all the active work-items within the pipeline. The following code example and figure
illustrate a live variable C in the OpenCL pipeline:

size_t index = get_global_id(0);

C = A[index] + B[index];
E[index] = C – D[index];

Figure 5. An FPGA Pipeline with a Live Variable C
Load

A[index]
Load

B[index]

Load
D[index]

Store
E[index]

C

+

-

Clock Cycle 0

Index = 0 Load
A[index]

Load
B[index]

Load
D[index]

Store
E[index]

C

+

-

Clock Cycle 1

Index = 1

Index = 0

Load
A[index]

Load
B[index]

Load
D[index]

Store
E[index]

C

+

-

Clock Cycle 2

Index = 2

Index = 0

Index = 1

1.3. Single Work-Item Kernel versus NDRange Kernel

Intel recommends that you structure your OpenCL kernel as a single work-item, if
possible. However, if your kernel program benefits from explicitly describing multiple
concurrent threads, you can structure your application as an NDRange kernel because
the kernel can execute multiple work-items concurrently.

When a kernel describes a single work item, the Intel FPGA SDK for OpenCL host can
execute the kernel as a single work-item, which is equivalent to launching a kernel
with an NDRange size of (1, 1, 1). The compiler tries to accelerate the single work
item for best performance.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The OpenCL Specification version 1.0 describes this mode of operation as task parallel
programming. A task refers to a kernel executed with one work-group that contains
one work-item.

Generally, the host launches multiple work-items in parallel. However, this data
parallel programming model is not suitable for situations where fine-grained data must
be shared among parallel work-items. In these cases, you can maximize throughput
by expressing your kernel as a single work-item. Unlike NDRange kernels, single work-
item kernels follow a natural sequential model similar to C programming. Particularly,
you do not have to partition the data across work-items.

To ensure high-throughput single work-item-based kernel execution on the FPGA, the
Intel FPGA SDK for OpenCL Offline Compiler must process multiple pipeline stages in
parallel at any given time. This parallelism is realized by pipelining the iterations of
loops.

Consider the following simple example code that shows accumulating with a single-
work item:

1 kernel void accum_swg (global int* a,
 global int* c,
 int size,
 int k_size) {
2 int sum[1024];
3 for (int k = 0; k < k_size; ++k) {
4 for (int i = 0; i < size; ++i) {
5 int j = k * size + i;
6 sum[k] += __prefetching_load(&a[j]);
7 }
8 }
9 for (int k = 0; k < k_size; ++k) {
10 c[k] = sum[k];
11 }
12 }

During each loop iteration, data values from the global memory a is accumulated to
sum[k]. In this example, the inner loop on line 4 has an initiation interval value of 1
with a latency of 11. The outer loop also has an initiation interval value greater than
or equal to 1 with a latency of 8.

Note: The launch frequency of a new loop iteration is called the initiation interval (II). II
refers to the number of hardware clock cycles for which the pipeline must wait before
it can process the next loop iteration. An optimally unrolled loop has an II value of 1
because one loop iteration is processed every clock cycle.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. System View of Single-Work Item Kernel

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure illustrates how each iteration of i enters into the block:

Figure 8. Inner Loop accum_swg.B2 Execution

L = 11

3

2

1

0
Location of loop iterations in the
hardware pipeline after first four
iterations have been launched.

Legend

When you observe the outer loop, having an II value of 1 also means that each
iteration of the thread can enter at every clock cycle. In the example, k_size of 20
and size of 4 is considered. This is true for the first eight clock cycles as outer loop
iterations 0 to 7 can enter without any downstream stalling it. Once thread 0 enters
into the inner loop, it takes four iterations to finish. Threads 1 to 8 cannot enter into
the inner loop and they are stalled for four cycles by thread 0. Thread 1 enters into
the inner loop after thread 0's iterations are completed. As a result, thread 9 enters
into the outer loop on clock cycle 13. Threads 9 to 20 enters into the loop at every
four clock cycles, which is the value of size. Through this example, you can observe
that the dynamic initiation interval of the outer loop is greater than the statically
predicted initiation interval of 1 and it is a function of the trip count of the inner loop.

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Single Work-Item Execution

Important: • Using any of the following functions causes your kernel to be interpreted as an
NDRange:

— get_local_id()

— get_global_id()

— get_group_id()

— get_local_linear_id()

— barrier

• If the reqd_work_group_size attribute is specified to be anything other than
(1, 1, 1), your kernel is interpreted as an NDRange. Otherwise, your kernel is
interpreted as a single-work-item kernel.

Consider the same accumulate example written in NDRange:

kernel void accum_ndr (global int* a,
 global int* c,
 int size) {
 int k = get_global_id(0);

 int sum[1024];
 for (int i = 0; i < size; ++i) {
 int j = k * size + i;
 sum[k] += a[j];
 }
 c[k] = sum[k];
}

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. System View of the NDRange Kernel

Limitations

The OpenCL task parallel programming model does not support the notion of a barrier
in single-work-item execution. Replace barriers (barrier) with memory fences
(mem_fence) in your kernel.

Related Information

• Multiple Work-Item Ordering for Channels

• Loops in a Single Work-Item Kernel on page 66

• Nested Loops on page 70

1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

14

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/multiple-work-item-ordering-for-channels.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Reviewing Your Kernel's report.html File

The <your_kernel_filename>/reports/report.html file provides you with
kernel analytical data such as area and memory usages, as well as loop structure and
kernel pipeline information.

Tip: If you are looking for oneAPI DPC++-specific instructions, then refer to Review the
report.html File chapter in the FPGA Optimization Guide for Intel oneAPI Toolkits.

2.1. High-Level Design Report Layout

The summary and analysis reports in the High-Level Design Reports (report.html
have four main sections:

• Reports menu

• Analysis pane

• Source code pane

• Details pane

Reports Menu

The Reports menu provides three hierarchical categories of views. You can select a
report to view an analysis of different parts of your kernel design. All reports are
interlinked.

• Summary gives you a quick overview of the results of compiling your design
including a summary of all kernels in your design along with an estimate of
resources used by the kernels. To navigate to a particular section of the summary
report, use the left-hand list pane, which you can show or hide by selecting the
List button on the top-right corner.

• Bottlenecks gives a quick overview of the throughput bottlenecks in the design.
You can show or hide the Bottlenecks viewers by selecting the List button on the
top-right corner.

• Throughput Analysis helps you in optimizing your design based on fMAX and
bottleneck summary, result from Intel FPGA dynamic profiler for OpenCL, loop
analysis, and latency estimator.

• Area Analysis helps you in locating the area inefficiency. It provides information
about resource utilization of the system, incremental compile, Intel Quartus
resource summary, and wasted RAM bits.

• System Viewers provide a graphical representation of the generated hardware to
supplement the throughput and area analysis. Each viewer shows different
information about kernels, channels, global memory, blocks, clusters, and more.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/analyze-your-design/analyze-the-fpga-early-image/review-the-report-html-file.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/analyze-your-design/analyze-the-fpga-early-image/review-the-report-html-file.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Analysis Pane

The analysis pane displays detailed information of the report you selected from the
reports menu.

Source Code Pane

The source code pane displays the code for all the source files in your kernel.

To select between different source files in your kernel, click the pull-down menu at the
top of the source code pane. To collapse the source code pane, do one of the following
actions:

• Click the X icon beside the source code pane pull-down menu.

• Select the Source Code button on the top-right corner of the report to show or
hide the source code pane.

The source code is displayed when you have not specified the -g0 compiler command
option when you compiled your code.

Details Pane

For each line that appears in a loop analysis or area report, the Details pane shows
additional information, if available, that elaborates on the comment in the Details
column report. To collapse the Details pane, do one of the following actions:

• Click the X icon on the top-right corner side of the Details pane.

• Select the Details button on the top-right corner of the report to show or hide the
Details pane.

2.2. Reviewing the Summary Report

The Summary Report gives you a quick overview of the results of compiling your
design including a summary of each kernel in your design and a summary of the
estimated resources that each kernel in your design uses.

The Summary report is divided into the following sections based on the order of
compilation:

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Compile Info

• Kernels Summary

• Clock Frequency Summary

• System Resource Utilization Summary

• Quartus Fitter Resource Utilization Summary

• Compile Estimated Kernel Resource Utilization Summary

• Warnings Summary

Compile Info

The Compile Info section shows general information about the compile including the
following items:

• Name of the project

• Target FPGA family, device, and board

• Intel Quartus® Prime version

• Intel FPGA SDK for OpenCL Offline Compiler version

• The date and time at which the reports are generated

Kernels Summary

The Kernels Summary lists each kernel in your design, and some information about
each of the kernels, including the following items:

• Line number in the source code

• Whether the kernel is an NDRange or a single work-item kernel

• Whether the autorun attribute is used

• The required workgroup size for the kernel

• The number of compute units

When you select a kernel in the list, the Details pane shows additional information
about the kernel:

Clock Frequency Summary

After you compile your design with Intel Quartus Prime software, the Clock Frequency
Summary shows the following:

• Quartus Fitter Clock Frequency

• Compiler Target Frequency (MHz)

• Compiler estimated frequency (MHz)

The Quartus Fitter clock frequency is the maximum clock frequency that can be
achieved for the design. When the compiler estimates a lower frequency than the
targeted frequency, the frequency value is highlighted in red.

Both the Kernels Summary and Clock Frequency Summary displays the target clock
frequency applied at the source on the kernel. When the values of the source is
different than the compilation flag you applied, the Clock Frequency Summary
Compiler Target Frequency shows “Various” instead of reporting a number.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Resource Utilization Summary
This displays a summary of device, static partition, kernel system total usage and total
estimate of the resources used including ALMs, RAMs and DSPs. The device utilization
and static partition constants are grayed out to indicate that you cannot change them
in your design since these numbers map to the device datasheet and BSP,
respectively.

Quartus Fitter Resource Utilization Summary

After you compile your design with Intel Quartus Prime software, this section is
populated with the compilation results. The Quartus Fit Resource Utilization Summary
section shows the total resource utilization both for the entire design, and for the
device.

Compile Estimated Kernel Resource Utilization Summary

The Estimated Resource Usage section shows a summary of the estimated resources
used by each kernel in your design, as well as the estimated resources used for all
channels, estimated resources for the global interconnect, constant cache, and board
interface.

Warnings Summary

The Warnings Summary section shows some of the compiler warnings generated
during the compilation.

2.3. Viewing Throughput Bottlenecks in the Design

The Bottlenecks viewer, when used with the Loop Analysis and Schedule
Viewerreports, provides information about the throughput bottlenecks in your design.
This viewer lists all loops that result in a bottleneck for the current selected system,
kernel, or task. You can select these loops to view more details about the bottleneck in
the Details pane. For more information about the concept of bottlenecks, refer to Loop
Bottlenecks on page 81.

The Bottlenecks viewer identifies the following categories of bottlenecks:

• FMAX reduced or II increased, or both

• Compiler applied bottlenecks (private copies set to 1 on local memory)

• Bottlenecks due to the pragmas or attributes you apply on a loop

• Concurrency limiter bottlenecks

Here is an example of data dependency:

kernel void lowered_fmax (global int *dst, int N) {
 int res = N;
 #pragma unroll 9
 for (int i = 0; i < N; i++) {
 res += 1;
 res ^= i;
 }
 dst[0] = res;
}

The Bottlenecks viewer displays the following message:

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9X Partially unrolled lowered_fmax.B1:
Compiler failed to schedule this loop with smaller II due to data dependency on
variable(s):
 res (Unknown location)
Most critical loop feedback path during scheduling:
 Number of nodes in critical path exceeded what the compiler has captured. Only
the top 19 failing nodes are listed.
 1.00 clock cycle 32-bit Select Operation (fmax_ii.cl: 2, fmax_ii.cl: 6)

In the Bottlenecks viewer, you can then select the loop to display more information in
the Details pane, which you can use to investigate why and what caused this
bottleneck. For additional information about the bottlenecks, refer to the System
Viewer and the Schedule Viewer. The System Viewer provides information about the
isolated failing path and bottleneck type. The Schedule Viewer displays the bottleneck
path for the variable.

2.4. Using Views

From the Report's Views drop-down menu, you can analyze your OpenCL system
using the following reports:

• System Viewer: Shows a hierarchical graphical report consisting of system,
global memory, block, and cluster views of your OpenCL system. It allows you to
review information such as the sizes and types of loads and stores between
kernels and different memories, channels connected between kernels, loops,
stalls, and latencies, and view all variables inside a cluster that have loop-carried
dependency.

• Kernel Memory Viewer: Shows how the offline compiler interprets the data
connections across the memory system of your kernel.

• Schedule Viewer: Displays a static view of the scheduled cycle and latency of a
clustered group of instructions in your design.

2.4.1. Features of the System Viewer

The System Viewer is an interactive graphical report of your OpenCL system that
allows you to review information such as the sizes and types of loads and stores,
stalls, latencies, load and store information between kernels and different memories,
channels connected between kernels, and loops. You can access this report by
selecting System Viewer from the Views drop-down menu. This viewer mainly helps
in viewing the connectivity between global memory and channels.

Tip: To understand the hierarchy within a kernel, refer to Kernels on page 51.

The System Viewer shows an abstracted netlist of your OpenCL system. Reviewing the
graphical representation of your OpenCL design allows you to verify memory
replication, identify any load and store instructions that are stallable, inspect the
connectivity of clusters, and review stallable and stall-free instructions.

You can interact with the System Viewer in the following ways:

• Use the mouse wheel to zoom in and out within the System Viewer.

• Hover over any node to view information on that node in the Details pane.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.1. Reviewing System Information

Use the system view of the System Viewer report to view various kernels in your
OpenCL system. The system view illustrates connections between your kernels and
connections from kernels to memories. In addition, the system view shows the
connection of blocks within a kernel and highlights blocks with a high initiation interval
(II).

Figure 12. Kernel System View of the System Viewer Report

2.4.1.2. Reviewing Global Memory Information

The global memory view of the System Viewer provides a list of all global memories in
the design. The global memory view shows the following:

• Connectivity within the system showing data flow direction between global
memory and kernels

• Memory throughput bottlenecks

• Status of the offline compiler flags, such as -num-reorder and -force-
single-store-ring

• Global load-store unit (LSU) types

• Type of write/read interconnects

• Number of write rings

• Number and connectivity of read-router buses

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/forcing-fewer-read-data-reorder-units.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/forcing-a-single-store-ring-to-reduce.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/forcing-a-single-store-ring-to-reduce.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following image is an example of the global memory view of the System Viewer:

Figure 13. Graphical Representation of the Global Memory in the System Viewer

In Graphical Representation of the Global Memory in the System Viewer:

• When you select stores or loads, you can view respective lines in the source code
and details about the LSU type and LSU-level bandwidth.

• For the write interconnect block, you can view the interconnect style, number of
writes to the global memory, status of the -force-single-store-ring
compiler flag, and number of store rings.

• For the read interconnect block, you can view the interconnect style and number
of reads from the global memory.

• For the read interconnect router block, you can view the status of the -num-
reorder flag, total number of buses, and all connections between buses and load
LSUs. Buses in this block provide read data from the memory to load LSUs.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

21

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/forcing-a-single-store-ring-to-reduce.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/forcing-fewer-read-data-reorder-units.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/forcing-fewer-read-data-reorder-units.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• For the global memory (DDR in Graphical Representation of the Global Memory in
the System Viewer), you can view the status of interleaving, interleaving size,
number of channels, maximum bandwidth the BSP can deliver, and channel width.

• For the memory controller block, you can view the maximum bandwidth the BSP
can deliver, sum of the load/store throughput, and read/write bandwidth. For
additional information about how global memory bandwidth use is calculated, refer
to Global Memory Bandwidth Use on page 147 in this guide. It describes the
formulas used in calculating the bandwidth.

• LSUs using USM pointers show up twice in both host and device global memory
views as they can access both memories.

2.4.1.3. Reviewing Block Information

The block view of the System Viewer provides a more granular graph view of the
kernel. This view shows the following:

• Fine grained details within kernels (including instructions and dependencies of the
instructions) of the generated datapath of computations. The Intel FPGA SDK for
OpenCL Offline Compiler encapsulates maximum instructions in clusters for better
QoR. The System Viewer shows clusters, instructions outside clusters and their
connections.

• Linking from the instruction back to source line by clicking the instruction node.

• Various information about the instructions, such as data width, node’s schedule
information in start cycle and latency are provided, if applicable.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following image is an example of the block view of the System Viewer:

Figure 14. Granular Graphical View of a Block

If your design has loops, the Intel FPGA SDK for OpenCL Offline Compiler encapsulates
the loop control logic into loop orchestration nodes and the initial condition of the
loops into loop input node and their connection to the datapath.

Inside a block, there are often stallable channel RD/WR or memory LD/ST nodes
connecting to computation nodes or clusters. You can click different nodes and view
the Details pane (or hover over the nodes) to see detailed information about the
instruction. For example, you can click the LD/ST nodes to view attributes such as
instruction type, width, LSU style, stall-free, global memory, scheduled start cycle,
and estimated latency. For stallable nodes, the latency value provided is an estimate.
Perform a simulation or hardware run for more accurate latency values.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Instruction Node with Details in a Tooltip Box

A cluster has a FIFO in its exit node to store any pipelined data in-flight. You can click
the cluster exit node to find the exit FIFO width and depth attribute. The cluster exit
FIFO size is also available in the cluster view of the System Viewer. Refer to the
following image for cluster exit FIFO details in a block view example.

Figure 16. Cluster Node With FIFO Details

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.4. Reviewing Cluster Information

The cluster view of the System Viewer provides more granular graph views of the
system or kernel. It helps in viewing clusters inside a block and all variables inside a
cluster that have loop-carried dependency.

This view shows the following:

• Fine grained details within clusters (including instructions and dependencies of the
instructions) of the generated datapath of computations.

• Linking from the instruction back to source line by clicking the instruction node.

• Various information about the instructions, such as data width, node’s schedule
information in start cycle and latency are provided, if applicable.

A cluster starts with an entry node and ends with an exit node. The cluster exit node
has a FIFO of depth greater than or equal to the latency of the cluster to store any
data in-flight. You can find the size of the cluster exit FIFO by clicking on the exit
node. The cluster exit FIFO size information is also available in the block view of the
System Viewer.

Figure 17. Granular Graphical View of a Cluster

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Cluster Exit Node Example

Besides computation nodes, when your design contains loops, you can see loop
orchestration nodes and variable nodes along with their Feedback nodes. The compiler
generates the loop orchestration logic for loops in your design. This logic is
represented by loop orchestration nodes in the cluster view of the System Viewer. A
variable node corresponds to a variable that has loop-carried dependency in your
design. A variable node goes through various computation logic and finally feeds to a
Feedback node that connects back to the variable node. This back edge means that
the variable is passed to the next iteration after the new value is evaluated. Scan for
loop-carried variables that have a long latency to the Feedback nodes as they can be
the II bottlenecks. You can cross-check by referring to the Loop Analysis report for
more information about the II bottleneck. The Feedback node has a FIFO to store any
data in-flight for the loop and is sized to d*II where d is the dependency distance
and II is the initiation interval. You can find the size of the cluster exit FIFO by clicking
on the feedback node and looking at the Details pane or the tooltip box. Refer to
Cluster Exit Node Example for cluster exit FIFO details in the cluster view example.

Note: The dependency distance is the number of iterations between successive load/store
that depends on each other.

2.4.2. Features of the Kernel Memory Viewer

Data movement is a bottleneck in many algorithms. The Kernel Memory Viewer in the
High Level Design Report (report.html) shows you how the Intel FPGA SDK for
OpenCL Offline Compiler interprets the data connections and synthesizes memory for
your kernel. Use the Kernel Memory Viewer to help you identify data movement
bottlenecks in your kernel design.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some patterns in memory accesses can cause undesired arbitration in the load-store
units (LSUs), which can affect the throughput performance of your kernel. Use the
Kernel Memory Viewer to identify unwanted arbitration in the LSUs.

Access the Kernel Memory Viewer by clicking System Viewers ➤ Kernel Memory
Viewer.

The following image illustrates the layout of the Kernel Memory Viewer:

Figure 19. Kernel Memory Viewer Layout

Details Pane

Kernel Memory
Viewer Pane

Code View Pane
Kernel Memory
List Pane

The Kernel Memory Viewer has the following panes:

Kernel Memory
List

Lists all memories present in your design. When you select a
memory name, you can view its graphical representation in
the Kernel Memory Viewer pane.

Kernel Memory
Viewer

Shows a graphical representation of the memory system or
memory bank selected in the Kernel Memory List pane.

Code View Shows the source code file for which the reports are
generated.

Details Shows the details of the memory system or memory bank
selected in the Kernel Memory List pane.

Kernel Memory List

The Kernel Memory List pane displays a hierarchy of kernels with memories
synthesized (RAMs, ROMs, and registers) and optimized away in that kernel.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Features and Details of the Kernel Memory List Pane

1

2

3

4

5

6

4

7

1
2
3
4
5
6
7

Kernel name(s)

RAM

ROM

Bank (for RAMs and ROMs)

Register

Optimized away

Filter

The following table describes each numbered feature highlighted in the above image:

Table 1. Kernel Memory List Pane Icons and Labels

Icon or Label Name Description

1 Kernel name The list of memories in your kernel can be expanded or collapsed. Memories
that do not belong to any kernel are shown under (Other).

2 RAM A RAM is a memory that has at least one write to it. The name of the RAM
memory is same as its name in your design.
When you select a memory name, you can view a logical representation of the
RAM in the Kernel Memory Viewer pane. By default, only the first bank of the
memory system is displayed.
To select banks that you want the Kernel Memory Viewer pane to display:
1. Expand the memory name.
2. Clear the memory name check box to collapse all memory banks in the

view.
3. Select the memory name check box to show all memory banks in the view.

3 ROM A ROM is a memory that is read-only. The name of the ROM memory is same
as its name in your design.
When you select a memory name, you can view a logical representation of the
ROM in the Kernel Memory Viewer pane. By default, only the first bank of the
memory system is displayed.
To select banks that you want the Kernel Memory Viewer pane to display:
1. Expand the memory name.
2. Clear the memory name check box to collapse all memory banks in the

view.
3. Select the memory name check box to show all memory banks in the view.

continued...

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Icon or Label Name Description

4 Bank #num Bank A memory bank is always associated with a RAM or a ROM. Each bank is
named as Bank #num, where #num is the ID of the memory bank starting
from 0.
• Click the bank name to display the bank view in the Kernel Memory Viewer

pane, which displays a graphical representation of the bank with all of its
replicates and private copies. This view can help you focus on specific
memory banks of a complex memory design.

• Clear the memory bank name check box to collapse the bank in the logical
representation of the memory.

• Select the memory bank name check box to display the bank in the logical
representation of the memory.

5 Register A register is a kernel variable that is carried through the pipeline in registers
(rather than being stored in a RAM or ROM). The name of the register is same
as its name in your design.
You can implement a register variable either exclusively in FFs or in a
combination of FFs and RAM-based FIFOs.

6 text label Optimized Away A kernel variable can be optimized away because it is unused in your design,
or compiler optimizations have transformed all uses of the variable such that
it is unnecessary. The name of the optimized away variable is same as its
name in your design.

7 Filter Use the Kernel Memory List filter to selectively view the list of RAMs, ROMs,
registers, and optimized away variables in your design.
When you clear the check box associated with an item in the filter, you hide
all occurrences of that kind of item in the Kernel Memory List. Filter your
Kernel Memory List to help you focus on a specific type of memory in your
design.

Kernel Memory Viewer

In the Kernel Memory Viewer pane, you can view connections between loads and
stores to specific logical ports on the banks in a memory system. You can also view
the number of replicates and private copies created per bank for your memory
system. You can see the following types of nodes in the Kernel Memory Viewer pane,
depending on the kernel memory system and what you have selected in the Kernel
Memory List pane:

Table 2. Node Types Observed in the Kernel Memory Viewer Pane

Node Type Description

Memory node The memory system for a given variable in your design.

Bank node A bank in the memory system. A memory system contains at least one bank. A
memory bank can connect to one or more port nodes. Only banks selected in the Kernel
Memory List pane are shown.

Replication node A replication node shows memory bank replicates that are created to efficiently support
multiple accesses to a local memory. A bank contains at least one replicate. You can
view replicate nodes only when you view a memory bank by clicking its name in the
Kernel Memory List pane.

Private-copy node A private-copy node shows private copies within a replicate that are created to allow
simultaneous execution of multiple loop iterations. A replicate contains at least one
private copy. You can view private-copy nodes only when you view a memory bank by
clicking its name in the Kernel Memory List pane.

continued...

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Node Type Description

Port node Each read or write access to a local memory is mapped to a port. The logical port for a
bank. There are three types of port:
• R: A read-only port
• W: A write-only port
• RW: A read and write port

LSU node A store (ST) or load (LD) node connected to the memory through port nodes.

Arbitration node An arbitration (ARB) node shows that LSUs compete for access to a shared port node,
which can lead to stalls.

Port-sharing node A port-sharing node (SHARE) shows that LSUs have mutually exclusive access to a
shared port node, so the load-store units are free from stalls.

Within the graphical representation of a memory in the Kernel Memory View pane, you
can do the following:

• Hover over any node to view the attributes of that node.

• Hover over an LSU node to highlight the path from the LSU node to all ports that
the LSU connects to.

• Hover over a port node to highlight the path from the port node to all LSUs that
read or write to the port node.

• Click a node to select it and display the node attributes in the Details pane.

The following images illustrate examples of what you see in the Kernel Memory
Viewer:

Figure 21. Logical Representation of a Memory in Kernel Memory Viewer Pane

Port sharing node

Memory node
Read-only port

Bank node

Write-only port

Read-write port

Arbitration node

LSU nodes

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Bank View of a Memory Bank in Kernel Memory Viewer Pane

Bank node

Replicate node

Private-copy node

LSU Nodes

Read-only port

Write-only port

Code View

The code view pane displays your source code. When you select a memory or a bank
in the Kernel Memory Viewer pane, the code view pane highlights the line of your code
where you declared the memory.

Details

The Details pane shows the attributes of the node selected in the Kernel Memory
Viewer pane. For example, when you select a memory in a kernel, the Details pane
displays information such as:

• width and depths of the memory banks

• memory layout

• address-bit mapping

• memory attributes that you specified in your source code

The content of the Details pane persists until you select a different node in the Kernel
Memory Viewer pane.

2.4.3. Features of the Schedule Viewer

The Schedule Viewer displays a static view of the scheduled cycle and latency of a
clustered group of instructions in your design. Use this report to view loop bottlenecks
such as fMAX/II bottlenecks, memory dependency, and occupancy limiter.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the Schedule Viewer:

• Columns depict the clock cycles.

• Rows display a list of kernels, blocks, clusters, and instructions ranked by the
order of execution.

• The red arrows are dependency lines for each block, cluster, or instruction. The
arrows show how each block, cluster, or instruction is dependent on other blocks,
clusters, or instructions. Hovering over a node (bar) highlights its outgoing
dependency lines.

• Each row represents a node and its start and end cycle.

• The bars are color-coded. Black indicates a kernel, blue indicates a block, green
indicates a cluster, and yellow indicates an instruction.

Figure 23. Schedule Viewer

2.5. Analyzing Throughput

The <your_kernel_filename>/reports/report.html file contains information
that helps you optimize your design based on the throughput knobs.

From the Reports menu's Throughput Analysis drop-down menu, you can analyze
throughput Loop Analysis report. The purpose of this view is to show the bottleneck
and loop hardware. For each loop, you can identify if it is pipelined and uses hyper-
optimized loop structure, and whether user pragma is applied. You can also find out
the loop's II and loop speculation value. For more information, refer to Reviewing Loop
Information on page 33.

Note: Loop Analysis does not report anything about NDRange loops.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1. Reviewing Loop Information

The Loops Analysis report contains information about all the loops (coalesced,
unrolled, and fused loops) in your design and their unroll statuses. This report helps
you examine whether the Intel FPGA SDK for OpenCL Offline Compiler can maximize
the throughput of your kernel.

Note: The fMAX II report is now deprecated and its information is merged with the Loop
Analysis report.

To view detailed information about the throughput bottlenecks, use the Bottlenecks
viewer.

To access the report, click Throughput Analysis ➤ Loop Analysis. The left-hand
Loops List pane displays the following types of loops:

• Fused loops

• Fused subloops

• Coalesced loops

• Fully unrolled loops

• Partial unrolled loops

• Regular loops

The Loops Analysis report captures the following key performance metrics on all
blocks:

• Source Location: Indicates the loop location in the source code.

• Pipelined: Indicates whether the body of a loop is pipelined. Pipelining allows for
many data items to get processed concurrently (in the same clock cycle) while
making efficient use of the hardware in the datapath by keeping it occupied.

• II: Shows the sustainable initiation interval (II) of the loop. Processing data in
loops is an additional source of pipeline parallelism. When you pipeline a loop, the
next iteration of the loop begins before previous iterations complete.

You can determine the number of clock cycles between iterations by the number of
clock cycles you require to resolve any dependencies between iterations. You can
refer to this number as the initiation interval (II) of the loop.

The Intel FPGA SDK for OpenCL Offline Compiler automatically identifies these
dependencies and builds hardware to resolve these dependencies while minimizing
the II. For additional information, refer to Specifying a loop initiation interval (II).

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

33

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/specifying-a-loop-initiation-interval-ii.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Scheduled fMAX: Shows the scheduled maximum clock frequency at which the
loop operates. The fMAX is the maximum rate at which the outputs of registers are
updated.

The physical propagation delay of the signal between two consecutive registers
limits the clock speed. This propagation delay is a function of the complexity of the
Boolean logic in the path. The path with the most logic (and the highest delay)
limits the speed of the entire circuit, and you can refer to this path as the critical
path.

The fMAX is calculated as the inverse of the critical path delay. High fMAX is
desirable because it correlates directly with high performance in the absence of
other bottlenecks. The offline compiler attempts to optimize the kernel for
different objectives for the scheduled fMAX depending on whether the fMAX target is
set and whether the #pragma II is set for each of the loops. The fMAX target is a
strong suggestion and the compiler does not error out if it is not able to achieve
this fMAX, whereas the #pragma II triggers an error if the compiler cannot
achieve the requested II. The fMAX achieved for each block of code is shown in the
Loops report.

The following table outlines the behavior of the scheduler in the Intel FPGA SDK
for OpenCL Offline Compiler:

Explicitly Specify fMAX? Explicitly Specify II? Compiler Behavior

No No Use heuristic to achieve best fMAX/II trade-off.

No Yes Best effort to achieve the II for the corresponding loop (may not
achieve the best possible fMAX).

Yes No Best effort to achieve fMAX specified (may not achieve the best
possible II).

Yes Yes Best effort to achieve the fMAX specified at the given II. The
compiler errors out if it cannot achieve the requested II.

Note: If you are using an fMAX target in the command line or for a kernel, use
#pragma II = <N> for performance-critical loops in your design.

• Latency: Shows the number of clock cycles a loop takes to complete one or more
instructions. Typically, you want to have low latency. However, lowering latency
often results in decreased fMAX.

• Speculated Iterations: Shows the loop speculation. Loop speculation is an
optimization technique that enables more efficient loop pipelining by allowing
future iterations to get initiated before determining whether the loop exited
already. For more information, refer to Loop Speculation on page 78.

• Max Interleaving Iterations: Indicates the number of interleaved invocations of
an inner loop that can be executed simultaneously. For more information, refer to
Loop Interleaving Control.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

34

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-interleaving-control-max-interleaving.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Loops Analysis report to determine where to deploy one or more
pragmas on your loops. Refer to the following pragma documentation in the Intel
FPGA SDK for OpenCL Programming Guide:

Table 3. Loop Pragmas

Pragma Reference

#pragma unroll Unrolling a Loop

#pragma loop_coalesce Coalescing Nested Loops

#pragma ii Specifying a loop initiation interval (II)

#pragma speculated_iterations Loop Speculation

#pragma max_concurrency Loop Concurrency

#pragma max_interleaving Loop Interleaving Control

#pragma disable_loop_pipelining Disabling Pipelining of a Loop

#pragma loop_fuse Fusing Adjacent Loops

#pragma nofusion Marking Loops to Prevent Automatic Fusion

Example 1. OpenCL Kernel Example
The following is an OpenCL kernel example that includes four loops:

 1 // ND-Range kernel with unrolled loops
 2 __attribute((reqd_work_group_size(1024,1,1)))
 3 kernel void t (global int * out, int N) {
 4 int i = get_global_id(0);
 5 int j = 1;
 6 for (int k = 0; k < 4; k++) {
 7 #pragma unroll
 8 for (int n = 0; n < 4; n++) {
 9 j += out[k+n];
10 }
11 }
12 out[i] = j;
13
14 int m = 0;
15 #pragma unroll 1
16 for (int k = 0; k < N; k++) {
17 m += out[k/3];
18 }
19 #pragma unroll
20 for (int k = 0; k < 6; k++) {
21 m += out[k];
22 }
23 #pragma unroll 2
24 for (int k = 0; k < 6; k++) {
25 m += out[k];
26 }
27 out[2] = m;
28 }

The loop analysis report of this design example highlights the unrolling strategy for
the different kinds of loops defined in the code.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

35

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/unrolling-a-loop-unroll-pragma-opencl.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-coalescing-loop-coalesce-pragma.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/specifying-a-loop-initiation-interval-ii.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-speculation-speculated-iterations.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-concurrency-max-concurrency-pragma.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-interleaving-control-max-interleaving.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-pipelining-of-a-loop-disable.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-interleaving-control-max-interleaving.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/marking-loops-to-prevent-automatic-fusion.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel FPGA SDK for OpenCL Offline Compiler executes the following loop unrolling
strategies based on the source code:

• Fully unrolls the inner loop (line 8) within the first loop because of the #pragma
unroll specification

• Does not unroll the second outer loop, Block4 (line 16), because of the #pragma
unroll 1 specification

• Fully unrolls the third outer loop (line 20) because of the #pragma unroll
specification

• Unrolls the fourth outer loop, Block5 (line 24), twice because of the #pragma
unroll 2 specification

2.6. Reviewing Area Information

The <your_kernel_filename>/reports/report.html file contains information
about area usage of your OpenCL system. You can view the area usage information of
the system.

The area report serves the following purposes:

• Provides detailed area breakdown of the whole OpenCL system. The breakdown is
related to the source code.

• Provides architectural details to give insight into the generated hardware and
offers actionable suggestions to resolve potential inefficiencies.

As observed in the following figure, the area report is divided into three levels of
hierarchy:

• System area: It is used by all kernels, channels, interconnects, and board logic.

• Kernel area: It is used by a specific kernel, including overheads, for example,
dispatch logic.

• Block area: It is used by a specific basic block within a kernel. A basic block area
represents a branch-free section of your source code, for example, a loop body.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Area Report Hierarchy

Note: The area usage data are estimates that the Intel FPGA SDK for OpenCL Offline
Compiler generates. These estimates might differ from the final area utilization
results.

In the Reports pane's Area Analysis drop-down menu, select Area Analysis of
System.

In the system view, the kernel is divided into logic blocks. To view the area usage
information for the code lines associated with a block, simply expand the report entry
for that block.

Note: The analyze-area Intel FPGA SDK for OpenCL utility option has been deprecated.
For reference information on the deprecated area report, refer to the Review Your
Kernel's Area Report to Identify Inefficiencies in Resource Usage section in version
16.0 of the Altera SDK for OpenCL Best Practices Guide.

Related Information

Altera SDK for OpenCL Best Practices Guide version 16.0

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

37

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-best-practices-guide-16.0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.1. Area Report Message for Board Interface

The area report identifies the amount of logic that the Intel FPGA SDK for OpenCL
Offline Compiler generates for the Custom Platform, or board interface. The board
interface is the static region of the device that facilitates communication with external
interfaces such as PCIe®. The Custom Platform specifies the size of the board
interface.

Table 4. Additional Information on Area Report Message

Message Notes

Platform interface logic. —

2.6.2. Area Report Message for Function Overhead

The area report identifies the amount of logic that the Intel FPGA SDK for OpenCL
Offline Compiler generates for tasks such as dispatching kernels.

Table 5. Additional Information on Area Report Message

Message Notes

Kernel dispatch logic. A kernel that includes the max_global_work_dim(0)
kernel attribute contains no overhead. As a result, this row
is not present in the corresponding area report.

2.6.3. Area Report Message for State

The area report identifies the amount of resources that your design uses for live
values and control logic.

To reduce the reported area consumption under State, modify your design as follows:

• Decrease the size of local variables

• Decrease the scope of local variables by localizing them whenever possible

• Decrease the number of nested loops in the kernel

2.6.4. Area Report Message for Feedback

The area report specifies the resources that your design uses for loop-carried
dependencies.

To reduce the reported area consumption under Feedback, decrease the number and
size of loop-carried variables in your design.

2.6.5. Area Report Messages for Private Variable Storage

The area report provides information on the implementation of private memory based
on your OpenCL design. For single work-item kernels, the Intel FPGA SDK for OpenCL
Offline Compiler implements private memory differently, depending on the types of
variable. The offline compiler implements scalars and small arrays in registers of
various configurations (for example, plain registers, shift registers, and barrel shifter).
The offline compiler implements larger arrays in block RAM.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Additional Information on Area Report Messages

Message Notes

Implementation of Private Memory Using On-Chip Block RAM

Private memory implemented in on-chip block RAM. The block RAM implementation creates a system that is
similar to local memory for NDRange kernels.

Implementation of Private Memory Using On-Chip Block ROM

— For each usage of an on-chip block ROM, the offline
compiler creates another instance of the same ROM. There
is no explicit annotation for private variables that the offline
compiler implements in on-chip block ROM.

Implementation of Private Memory Using Registers

Implemented using registers of the following size:
- <X> registers of width <Y> bits and depth <Z>.
• Depth was increased by a factor of <N> due to a loop

initiation interval of <M>.
• Each register is implemented in a RAM-based FIFO and

consumes <U> RAMs.
- ...

Reports that the offline compiler implements a private
variable in registers. The offline compiler might implement a
private variable in many registers. This message provides a
list of the registers with their specific widths and depths.

Implementation of Private Memory Using Shift Registers

Implemented as a shift register with <N> or fewer tap
points. This is a very efficient storage type.
Implemented using registers of the following sizes:
- <X> registers of width <Y> bits and depth <Z>.
• Depth was increased by a factor of <N> due to a loop

initiation interval of <M>.
• Each register is implemented in a RAM-based FIFO and

consumes <U> RAMs.
- ...

Reports that the offline compiler implements a private
variable in shift registers. This message provides a list of
shift registers with their specific widths and depths.
The offline compiler might break a single array into several
smaller shift registers depending on its tap points.
Note: The offline compiler might overestimate the number

of tap points.

Implementation of Private Memory Using Barrel Shifters with Registers

Implemented as a barrel shifter with registers due to
dynamic indexing. This is a high overhead storage type. If
possible, change to compile-time known indexing. The area
cost of accessing this variable is shown on the lines where
the accesses occur.
Implemented using registers of the following size:
- <X> registers of width <Y> bits and depth <Z>.
• Depth was increased by a factor of <N> due to a loop

initiation interval of <M>.
• Each register is implemented in a RAM-based FIFO and

consumes <U> RAMs.
- ...

Reports that the offline compiler implements a private
variable in a barrel shifter with registers because of dynamic
indexing.
This row in the report does not specify the full area use of
the private variable. The report shows additional area use
information on the lines where the variable is accessed.

Note: • The area report annotates memory information on the line of code that declares or
uses private memory, depending on its implementation.

• When the offline compiler implements private memory in on-chip block RAM, the
area report displays relevant local-memory-specific messages to private memory
systems.

2.6.5.1. Area Report Message for Constant Memory

The area report specifies the size of the constant cache memory. It also provides
information such as data replication and the number of read operations.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7. Additional Information on Area Report Message

Message Notes

<N> bytes constant cache accessible to all kernels and is
persistent across kernel invocations. Data inside the cache
is replicated <X> times to support <Y> reads. Cache
optimized for hits, misses incur a large penalty. If amount of
data in the cache is small, consider passing it by value as a
kernel argument. Use Intel FPGA dynamic profiler for
OpenCL to check stalls on accesses to the cache to assess
the cache's effectiveness. Profiling actual cache hit rate is
currently not supported.

—

2.7. Optimizing an OpenCL Design Example Based on Information in
the HTML Report

A guide on how to use the information in the HTML report to optimize an OpenCL
kernel.

OpenCL design example that performs matrix square AxA:

 // performs matrix square A*A
 // A is a square LEN*LEN matrix
 // A = [r0 : [c[0], c[1], ... c[LEN-1]],
 // r1 : [c[0], ...],
 // ...],
 // r[LEN-1] : []]

 // LEN = 100

 kernel void matrix_square (global float* restrict A, global float* restrict out)
 {
 for(unsigned oi = 0 ; oi < LEN*LEN ; oi++)
 {
 float sum = 0.f;
 int row = oi / LEN;
 int col = oi % LEN;

 #pragma unroll
 for (int stride = 0 ; stride < LEN ; stride++)
 {
 unsigned i = (row * LEN) + stride;
 unsigned j = (stride * LEN) + col;
 sum += A[i] * A[j];
 }

 out[oi] = sum;
 }
 }

The area analysis of the kernel matrix_square indicates that the estimated usages
of flipflops (FF) and RAMs are high.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Area Report of the Unoptimized Kernel matrix_square

Further examination of block 2 in the System viewer shows that Block2 also has a high
latency value.

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. System Viewer Results for the Unoptimized Kernel matrix_square

The cause for these performance bottlenecks is the system is loading data from global
memory from inside a loop. Therefore, the first optimization step you can take is to
preload the data into local memory, as shown in the following modified code:

 // 1. preload the data into local memory

 kernel void matrix_square_v1 (global float* restrict A, global float* restrict
out)
 {
 local float cache_a[LEN*LEN];
 for(unsigned k = 0 ; k < LEN*LEN ; k++)
 {
 cache_a[k] = A[k];
 }

 for(unsigned oi = 0 ; oi < LEN*LEN ; oi++)
 {
 float sum = 0.f;
 int row = oi / LEN;
 int col = oi % LEN;

 #pragma unroll
 for(unsigned stride = 0 ; stride < LEN ; stride++)
 {
 unsigned i = (row * LEN) + stride;
 unsigned j = (stride * LEN) + col;
 sum += cache_a[i] * cache_a[j];
 }

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 out[oi] = sum;
 }
 }

Figure 27. Area Report Results for the Modified Kernel matrix_square_v1

Figure 28. Cluster View of the Modified Kernel matrix_square_v1

If you remove the modulus computation and replace it with a column counter, as
shown in the modified kernel matrix_square_v2, you can reduce the amount of
adaptive look-up table (ALUT) and FF use.

 // 1. preload the data into local memory
 // 2. remove the modulus computation

 kernel void matrix_square_v2 (global float* restrict A, global float* restrict
out)
 {

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 local float cache_a[LEN*LEN];
 for(unsigned k = 0 ; k < LEN*LEN ; k++)
 {
 cache_a[k] = A[k];
 }

 unsigned row = 0;
 unsigned col = 0;

 for(unsigned oi = 0 ; oi < LEN*LEN ; oi++)
 {
 float sum = 0.f;

 // keep a column counter to know when to increment row
 if(col == LEN - 1)
 {
 col = 0;
 row += 1;
 }
 else
 {
 col += 1;
 }

 #pragma unroll
 for(unsigned stride = 0 ; stride < LEN ; stride++)
 {
 unsigned i = (row * LEN) + stride;
 unsigned j = (stride * LEN) + col;
 sum += cache_a[i] * cache_a[j];
 }

 out[oi] = sum;
 }
 }

Figure 29. Area Report of Kernel matrix_square_v2

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Cluster View of Kernel matrix_square_v2

Further examination of the area report of matrix_square_v2 reveals that the
computations for indexes i and j (that is, unsigned i = (row * LEN) + stride
and unsigned j = (stride * LEN) + col, respectively) have very different
ALUT usage estimations.

A way to optimize DSP and RAM block usages for index calculation is to remove the
multiplication computation and simply keep track of the addition, as shown in the
modified kernel matrix_square_v3 below.

// 1. preload the data into local memory
 // 2. remove the modulus computation
 // 3. remove DSP and RAM blocks for index calculation helps reduce the latency

 kernel void matrix_square_v3 (global float* restrict A, global float* restrict
out)
 {

 local float cache_a[LEN*LEN];
 for(unsigned k = 0 ; k < LEN*LEN ; k++)
 {
 cache_a[k] = A[k];
 }

 unsigned row_i = 0;
 unsigned row_j = 0;

 for(unsigned oi = 0 ; oi < LEN*LEN ; oi++)
 {
 unsigned i, j;

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // keep a column base counter to know when to increment the row base
 if(row_j == LEN - 1)
 {
 row_i += LEN;
 row_j = 0;
 }
 else
 {
 row_j += 1;
 }

 // initialize i and j
 i = row_i;
 j = row_j;

 float sum = 0.f;
 #pragma unroll
 for(unsigned stride = 0 ; stride < LEN ; stride++)
 {
 i += 1; // 0, 1, 2, 3, 0,...
 j += LEN; // 0, 3, 6, 9, 1,...
 sum += cache_a[i] * cache_a[j];
 }

 out[oi] = sum;
 }
 }

By removing the multiplication step, you can reduce DSP usage as shown in the area
report below. In addition, the modification helps reduce latency.

Figure 31. Area Report of Kernels matrix_square_v3

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. System Viewer of the Kernel matrix_square_v3

To resolve the loop-carried dependency, unroll the sum-product for complete
parallelism and create registers to avoid multiple copies of cache_a, as shown in the
code below in the modified kernel matrix_square_v4.

// 1. preload the data into local memory
 // 2. remove the modulus computation
 // 3. remove DSP and RAM blocks for index calculation helps reduce the latency
 // 4. unroll the sum-product for full parallelism, create registers to avoid
many copies of cache_a

 kernel void matrix_square_v4 (global float* restrict A, global float* restrict
out)
 {

 local float cache_a[LEN*LEN];
 for(unsigned k = 0 ; k < LEN*LEN ; k++)
 {
 cache_a[k] = A[k];
 }

 unsigned row_i = 0;
 unsigned row_j = 0;

 for(unsigned oi = 0 ; oi < LEN*LEN ; oi++)
 {
 unsigned i, j;
 // keep a column base counter to know when to increment the row base
 if(row_j == LEN - 1)
 {
 row_i += LEN;
 row_j = 0;
 }
 else
 {
 row_j += 1;
 }

 // initialize i and j
 i = row_i;
 j = row_j;

 float r_buf[LEN];
 float c_buf[LEN];
 for(int stride = 0 ; stride < LEN ; stride++)
 {
 i += 1; // 0, 1, 2, 3, 0,...
 j += LEN; // 0, 3, 6, 9, 1,...
 r_buf[stride] = cache_a[i];
 c_buf[stride] = cache_a[j];
 }

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // uses harder floating point when -fp-relaxed is used
 float sum = 0.f;
 #pragma unroll
 for(unsigned idx = 0; idx < LEN; idx++)
 {
 sum += r_buf[idx] * c_buf[idx];
 }

 out[oi] = sum;
 }
 }

As shown in the cluster view results below, by breaking up the computation steps, you
can achieve higher throughput at the expense of increased area usage. The
modification also reduces the latency by 50%.

Figure 33. Cluster View of the Modified Kernel matrix_square_v4

The following cluster view provides an alternative with -fp-relaxed to show dot
product instead of chain:

Figure 34. Cluster View of the Modified Kernel matrix_square_v4

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following table provides the throughput comparison for all five versions of the
kernel:

Table 8. Throughput Comparison

Kernel ALUTs FFs RAMs MLABs DSPs Dot Product
Loop Latency

matrix_square 81806 (10%) 302792 (18%) 1989 (73%) 408 (1%) 100 (7%) 637

matrix_square_v
1

20094 (2%) 38814 (2%) 1619 (60%) 248 (1%) 100 (7%) 380

matrix_square_v
2

15487 (2%) 51813 (3%) 1110 (41%) 298 (1%) 100 (7%) 364

matrix_square_v
3

18279 (2%) 37554 (2%) 1618 (60%) 244 (1%) 100 (7%) 362

matrix_square_v
4

(-fp-relaxed)
9681 (1%) 22409 (1%) 257 (9%) 67 (0%) 103 (7%) 37

2.8. Accessing HLD FPGA Reports in JSON Format

In addition to the report.html file, the Intel FPGA SDK for OpenCL also provides the
HLD FPGA Report data in JSON files.

The JSON files containing the HLD FPGA Reportreport data are available in the
<your_kernel_filename>/reports/lib/json directory. The directory provides
the following .json files:

Table 9. JSON Files in the <your_kernel_filename>/reports/lib/json Directory

File Description

area.json Area Analysis of System

block.json Block View of System Viewer

bottleneck.json Bottleneck View of Loop Analysis Report

gmv.json Global Memory View of the System Viewer

info.json Summary of project name, compilation command, versions,
and timestamps

loops.json Navigation tree of Loop Analysis report

loops_attr.json Loop Analysis report

mav.json System View of System Viewer

new_lmv.json Kernel Memory Viewer

pipeline.json Cluster View of System Viewer

quartus.json Quartus Prime compilation summary

schedule.json Schedule Viewer

continued...

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Description

summary.json Kernel compilation name mapping

tree.json Navigation tree of System Viewer

warnings.json Compilation warning messages

Important: The structure of these JSON files might change from release to release without notice.

You can read the following .json files without a special parser:

• area.json

• area_src.json

• loops.json

• quartus.json

• summary.json

For example, if you want to identify all of the values and bottlenecks for the initiation
interval (II) of a loop, you can find the information in the children section in the
loops.json file, as shown below:

“name”:”<block name|Kernel: kernel name> # Find the loops which does not begin
with “Kernel:”

“data”:[<Yes|No>, <#|n/a>, <II|n/a>] # The data field corresponds to
“Pipelined”, “II”, “Bottleneck”

2. Reviewing Your Kernel's report.html File

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. OpenCL Kernel Design Concepts
Familiarizing yourself on how the Intel FPGA SDK for OpenCL implements OpenCL
design components such as kernels, global memory interconnect, local memory, loops,
and channels can help you optimize your OpenCL design.

Tip: For more detailed explanation of FPGA design concepts, refer to Introduction to FPGA
Design Concepts chapter in the FPGA Optimization Guide for Intel oneAPI Toolkits.

Figure 35. OpenCL Design Components

Kernels on page 51

Global Memory Interconnect on page 52

Local Memory on page 54

Loops in a Single Work-Item Kernel on page 66

Channels on page 84

Load-Store Units on page 85

3.1. Kernels

Each kernel in your OpenCL system is represented by a set of blocks. Inside each
block is a set of non-branching instructions that implement your algorithm and the
offline compiler's loop orchestration logic. The block shows the execution flow of your

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/introduction-to-fpga-design-concepts.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/introduction-to-fpga-design-concepts.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

kernel. When there are loops, there is a back edge to the block or its previous blocks,
depending on the loop structure, for example, nested loops. Loops usually impose II
bottlenecks and are a main focus for optimization.

A block has three main parts — an input or loop input node, a set of instructions and a
branch node. The input and branch nodes may not be present depending on if there is
branching in or out of the block. The input or loop input node determines the initial
value for variables depending on where the branch into this block originated. The rest
of the block contains stallable and non-stallable instructions, and clusters. A well-
optimized design should contain a minimal number of stallable instructions, such as
stallable I/O or memory accesses.

The non-stallable instructions within in block are grouped into clusters to reduce
handshaking overheads with stallable instructions. A cluster has an entry and an exit
node. There is only a stall-free cluster. You can find the exit FIFO information in the
cluster’s exit node. Finally, the branch node informs the next block to go to, under
which condition.

In the HLD report, you can find different views of your kernel, under the Views drop-
down menu. For more information, refer to Using Views on page 19.

The Intel FPGA SDK for OpenCL Offline Compiler compiles a kernel that does not use
any built-in work-item functions, such as get_global_id() and get_local_id(),
as a single work-item kernel. Otherwise, the offline compiler compiles the kernel as an
NDRange kernel. For more information about built-in work-item functions, refer to
section 6.11.1: Work-Item Functions of the OpenCL Specification version 1.0.

For single work-item kernels, the offline compiler attempts to pipeline every loop in
the kernel to allow multiple loop iterations to execute concurrently. Kernel
performance might degrade if the compiler cannot pipeline some of the loops
effectively, or if it cannot pipeline the loops at all.

The offline compiler cannot pipeline loops in NDRange kernels. However, these loops
can accept multiple work-items simultaneously. A kernel might have multiple loops,
each with nested loops. If you tabulate the total number of iterations of nested loops
for each outer loop, kernel throughput is usually reduced by the largest total iterations
value that you have tabulated. To execute an NDRange kernel efficiently, there must a
large number of threads.

3.2. Global Memory Interconnect

The ability to maximize memory bandwidth for read and write accesses is crucial for
high performance computing. Various types of modules for reading from and writing to
global memory can exist in an OpenCL system. These modules are called load-store
units (LSUs).

Unlike a GPU, an FPGA can build any custom LSU that is best suited for the memory
access pattern that the compiler infers for your application. As a result, your ability to
write OpenCL code that selects the ideal LSU types for your application might help
improve the performance of your design significantly.

When reviewing the HTML area report of your design, the values in the Global
interconnect entry at the system level represents the size of the global memory
interconnect.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

52

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. HTML Area Report Showing the Size of the Global Memory Interconnect in an
OpenCL Design

In the HTML report, the system view of the System Viewer depicts global memory
interconnects as loads (LD), stores (ST), and connections (gray lines).

Figure 37. System Viewer (System View) Result of Global Memory Interconnects in an
OpenCL Design

The Intel FPGA SDK for OpenCL Offline Compiler selects the appropriate type of LSU
for your OpenCL system based on the memory access pattern of your design. Example
LSU types include contiguous access (or consecutive access) and burst-interleaved

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

access. Contiguous Memory Access and Global Memory Partitions illustrate the
difference in access patterns between contiguous and burst-interleaved memory
accesses, respectively.

3.3. Local Memory

Local memory is a complex system. Unlike the typical GPU architecture where there
are different levels of caches, FPGA implements local memory in dedicated memory
blocks inside the FPGA.

Local Memory Characteristics

• Ports: Each read or write access to a local memory is mapped to a port.

• Banks: The contents of a local memory can be partitioned into one or more
banks, such that each bank contains a subset of data contained in a local memory.

• Replicate: A bank consists of one or more replicates. Each replicate in a bank has
the same data as the other replicates. Replicates are created to efficiently support
multiple accesses to a local memory. Each replicate has one write port and one
read port that your design can access simultaneously. If your local memory is
double pumped, each replicate has four physical ports, of which up to three can be
read ports. Refer to the Double Pumping on page 60 section for more
information.

• Private copies: A replicate can contain one or more private copies to allow
pipelined execution of multiple workgroups. Refer to the Local Memory Banks and
Private Copies on page 56 section for more information.

Figure 38. Implementation of Local Memory in One or Multiple M20K Blocks

Local Memory

Read port 0

Write port

M20K

M20K

M20K

Bank 0

Replicate 0

In your kernel code, declare local memory as a variable with type local:

local int lmem[1024];

The Intel FPGA SDK for OpenCL Offline Compiler customizes the local memory
properties such as width, depth, banks, replication, number of private copies, and
interconnect. The offline compiler analyzes the access pattern based on your code and
then optimizes the local memory to minimize access contention.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following diagrams illustrate these basic local memory properties (size, width,
depth, banks, replication, and number of private copies):

Figure 39. Local Memory Examples Explaining Local Memory Properties

In the HTML report, the overall state of the local memory is reported as stall-free,
stall-free with replication, and potentially inefficient.

The key to designing a highly efficient kernel is to have memory accesses that never
stall. For a stall-free memory configuration, all possible concurrent memory access
sites in the data path are guaranteed to access memory without contention.

The offline compiler always attempts to find a stall-free configuration for all local
memories in your kernel code. However, in a complex kernel, the offline compiler
might not have enough information to infer whether a memory access has any
conflict. As a result, the offline compiler infers local interconnect arbitration to
arbitrate the memory access. However, inferring arbitration might cause degradation
in performance. Refer to Load-Store Units on page 85 for more information.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Complex Local Memory Systems

Kernel Pipeline Local Memory
Interconnect

M20K

M20K
M20K
M20K
M20K
M20Kport 0

port 1

The offline compiler does not always implement local memory with the exact size that
you specified. Since FPGA RAM blocks have specific dimensions, the offline compiler
implements a local memory size that rounds up to the next supported RAM block
dimension. Refer to device-specific information for more details on RAM blocks.

Local Memory Banks and Private Copies

Local memory banking works only on the lowest dimension by default. Having multiple
banks allow simultaneous writes to take place. In the following code example, each
local memory access in a loop has a separate address. The offline compiler can infer
the access pattern to create four separate banks for lmem. Four separate banks allow
four simultaneous accesses to lmem[][], which achieves the stall-free configuration.
In addition, the offline compiler creates two private copies for lmem to allow pipelined
execution of two simultaneous workgroups.

#define BANK_SIZE 4
__attribute__((reqd_work_group_size(8, 1, 1)))
kernel void bank_arb_consecutive_multidim (global int* restrict in,
 global int* restrict out) {
 local int lmem[1024][BANK_SIZE];
 int gi = get_global_id(0);
 int gs = get_global_size(0);
 int li = get_local_id(0);
 int ls = get_local_size(0);
 int res = in[gi];
 #pragma unroll
 for (int i = 0; i < BANK_SIZE; i++) {
 lmem[((li+i) & 0x7f)][i] = res + i;
 res = res >> 1;
 }
 int rdata = 0;
 barrier(CLK_GLOBAL_MEM_FENCE);
 #pragma unroll
 for (int i = 0; i < BANK_SIZE; i++) {
 rdata ^= lmem[((li+i) & 0x7f)][i];
 }
 out[gi] = rdata;
 return;
}

The following figure illustrates the implementation (as shown in the Kernel memory
Viewer) of the following local variable:

local int lmem[1024][4];

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Implementation of lmem[1024][4]
Local memory size = 32768 bytes = 2 private copies x (1024 x 4) x 4 bytes. The size of each bank is 8192
bytes.

Width=4 bytes

Bank 0
R

W

LD

ST

Bank 1
R

W

LD

ST

Bank 2
R

W

LD

ST

Bank 3
R

W

LD

ST

Depth =
 2048 words

Bank 1
Replicate 0

Copy 0
Depth
= 1024 words

Width = 4 bytes

Copy 1 W

R

Depth
= 1024 words

LD

ST

lmem

If the number of private copies increase your design area significantly, consider
reducing the number of barriers in the kernel or increasing the
max_work_group_size value to reduce the inferred number of private copies.

You can specify the number of banks for your memory system by using
__attribute__((numbanks(N)). For more information, refer to Improving Kernel
Performance by Banking the Local Memory on page 154.

If you do not want to bank on the lowest dimension, use the bank_bits attribute to
specify bits from a memory address to use as bank-select bits. By using the
bank_bits attribute, you can separate memory data into multiple banks while
specifying which address bits to use to select the bank. In the following example, the
banking is done on seventh and eighth bits instead of the lowest two dimensions:

#define BANK_SIZE 4
kernel void bank_arb_consecutive_multidim_origin (global int* restrict in,
 global int* restrict out) {
 local int a[BANK_SIZE][128] __attribute__((bank_bits(8,7),bankwidth(4)));
 int gi = get_global_id(0);
 int li = get_local_id(0);
 int res = in[gi];
 #pragma unroll
 for (int i = 0; i < BANK_SIZE; i++) {
 a[i][((li+i) & 0x7f)] = res + i;
 res = res >> 1;
 }
 int rdata = 0;
 barrier(CLK_GLOBAL_MEM_FENCE);
 #pragma unroll
 for (int i = 0; i < BANK_SIZE; i++) {

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 rdata ^= a[i][((li+i) & 0x7f)];
 }
 out[gi] = rdata;
 return;
}

The view of the resulting memory is the same as the initial view from the first
example, except that the size of the memory is now 4096 bytes = 2 private copies x
(4 x 128) x 4 bytes. The Details pane of the Kernel Memory Viewer shows the address
bit information, which also contains the bank_bits information.

The following figure illustrates the address bit information, as shown in the local
memory report, for the following local variable declaration:

local int a[4][128] __attribute__((bank_bits(8,7),bankwidth(4)));

Figure 42. Address Bit Information for a[4][128] with Requested bank_bits(8,7)

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b10 b9 b8 b7 b6 b5 b4 b3 b2
0 0

b10 b9

b11

To address 4096 bytes of memory, we
need 12 address bits.

Since the bank width is 4 bytes, all memory words begin
on addresses 0, 4, 8 and so on. Hence, the last two bits
are always 0.

The word address bits specify which memory word
within a copy is being accessed.

The choice of bank-bits can alter the structure of the memory. If bank-bits (4,3) are
specified in the previous example, it results in an arbitrated memory system. In this
banking configuration, the local memory accesses no longer target separate banks.
The compiler must build a local memory interconnect to arbitrate these accesses,
which degrades performance.

local int a[4][128] __attribute__((bank_bits(4,3),bankwidth(4)));

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Local Memory System for a[4][128] With Requested bank_bits (4,3)

Local Memory Replication

To achieve a stall-free configuration, the compiler may decide to replicate a local
memory system to increase the number of available read ports. Each store operation
to a local memory system is performed simultaneously on every replicate, so each
replicate contains identical data. Each replicate can be independently read from. This
increases the number of simultaneous read operations the local memory system can
support.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Double Pumping

By default, each local memory replicate has two physical ports. The double pumping
feature allows each local memory replicate to support up to four physical ports.

The underlying mechanism that enables double pumping is running the underlying
M20K at double the frequency of the kernel logic. This enables two read or write
operations to take place every clock cycle. From the perspective of kernel logic, a
double-pumped memory has four effective physical ports.

Figure 44. Hardware Architecture of Double Pumping in Local Memory

Read port 0

Write port
Read port 2
Read port 1

Local Memory
Legend

Multiplexers implemented
by core logic

CLK

2X CLK

Bank 0

M20K

lmem

Replicate 0

By enabling the double pumping feature, the offline compiler trades off area versus
maximum frequency.

Advantages of double pumping:

• Increases the number of available physical ports

• May reduce RAM usage by reducing replication

Disadvantages of double pumping:

• Higher logic and latency as compared to single pumped configuration

• Might reduce kernel clock frequency

You can control the pump configuration of your local memory system by using
__attribute__((singlepump)) and __attribute__((doublepump)). For more
information, refer to Kernel Attributes for Configuring Local and Private Memory
Systems.

The following code example illustrates the implementation of local memory with three
read ports and three write ports. The offline compiler enables double pumping and
replicates the local memory three times to implement a stall-free memory
configuration.

#define BANK_SIZE 4
kernel void bank_arb_consecutive_multidim_origin (global int* restrict in,
 global int* restrict out) {
 local int a[BANK_SIZE][128];
 int gi = get_global_id(0);
 int li = get_local_id(0);
 int res = in[gi];
 #pragma unroll 1
 for (int i = 0; i < BANK_SIZE; i++) {
 a[i][li+i] = res + i;
 a[gi][li+i] = res + i;
 a[gi+i][li] = res + i;
 res = res >> 1;

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

60

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/memory-attributes-for-configuring-kernel.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/memory-attributes-for-configuring-kernel.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
 int rdata = 0;
 barrier(CLK_GLOBAL_MEM_FENCE);
 #pragma unroll 1
 for (int i = 0; i < BANK_SIZE; i++) {
 rdata ^= a[i][li+i];
 rdata += a[gi+i][li+i];
 rdata += a[gi][li];
 }
 out[gi] = rdata;
 return;
}

The following figure illustrates the implementation (as shown in the Kernel Memory
Viewer) for the following local variable declaration:

local int a[4][128];

Figure 45. Local Memory System for a[4][128]
Local memory size = 6144 bytes = 3 replicates x 512 words x 4 bytes. Each replicate has identical memory
contents.

Depth =
 512 words

Width = 4 bytes

Depth =
 512 words

Depth =
 512 words

3.3.1. Changing the Memory Access Pattern Example

The following is an example code of a simple OpenCL kernel:

kernel void big_lmem_4r_4w_nosplit (global int* restrict in,
 global int* restrict out) {
 local int lmem[4][1024];

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 int gi = get_global_id(0);
 int gs = get_global_size(0);
 int li = get_local_id(0);
 int ls = get_local_size(0);
 int res = in[gi];

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 lmem[i][(li*i) % ls] = res;
 res >>= 1; }

 // Global memory barrier
 barrier(CLK_GLOBAL_MEM_FENCE);

 res = 0;
 #pragma unroll
 for (int i = 0; i < 4; i++) {
 res ^= lmem[i][((ls-li)*i) % ls]; }
 out[gi] = res;
}

In the System Viewer report, the system view of this example highlights the stallable
loads and stores.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. System View of the Example

Stallable
Store/Loads

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 47. Area Report of the Example

Double pump uses
more logic (ALUTs/FFs)
but provides more
ports

Expected to have
four banks, but
the compiler
banked on
lowest dimen-

Figure 48. Kernel Memory Viewer of the Example

Load and store
getting arbitrated

Arbitration
(stallable)

Both banks Bank 0 Only Bank 1 Only

Observe that only two memory banks are created, with high arbitration on the first
bank between load and store operations. Now, switch the banking indices to the
second dimension, as shown in the following example code, :

kernel void big_lmem_4r_4w_nosplit (global int* restrict in,
 global int* restrict out) {
 local int lmem[1024][4];

 int gi = get_global_id(0);
 int gs = get_global_size(0);
 int li = get_local_id(0);
 int ls = get_local_size(0);
 int res = in[gi];

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 lmem[(li*i) % ls][i] = res;
 res >>= 1;

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }

 // Global memory barrier
 barrier(CLK_GLOBAL_MEM_FENCE);

 res = 0;
 #pragma unroll
 for (int i = 0; i < 4; i++) {
 res ^= lmem[((ls-li)*i) % ls][i];
 }
 out[gi] = res;
}

In the kernel memory viewer, you can observe that now four memory banks are
created, with separate load store units. All load store instructions are stall-free.

Figure 49. Kernel Memory Viewer of the Example After Changing the Banking Indices

Four memory
banks created
with separate
load store units

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 50. Area Report of the Example After Changing the Banking Indices

Before changing

After changing

3.4. Loops in a Single Work-Item Kernel

The Intel FPGA SDK for OpenCL Offline Compiler optimizes performance of single
work-item kernels by pipelining loops.

The datapath of a loop within a single work-item kernel can contain multiple iterations
in flight. This behavior is different from a loop within an NDRange kernel in that an
NDRange kernel's loop contains multiple work-items (rather than loop iterations) in
flight. In an optimally pipelined loop, a new loop iteration is launched every clock
cycle. Launching one loop iteration per clock cycle maximizes pipeline efficiency and
yields the best performance. As shown in the figure below, launching one loop per
clock cycle allows a kernel to finish faster.

Figure 51. Comparison of the Launch Frequency of Loop Iterations Between a Non-
Pipelined Loop and a Pipelined Loop

Cl
oc

k
Cy

cl
es

i0

i1

i2 Cl
oc

k
Cy

cl
es

i0
i1

i5
i4

i3
i2

Non-Pipelined Loop Pipelined Loop

The number of clock cycles between the launch of one loop iteration and the next is
called the loop's initiation interval (II). An optimally pipelined loop has an II value of 1
because a new loop iteration is launched every clock cycle.

The Intel FPGA SDK for OpenCL Offline Compiler may not pipeline every loop in the
kernel. If a loop is not pipelined, a loop iteration can not begin until the previous
iteration finishes executing. In this case, only one loop iteration is active in the loop's
datapath at a time. View the HTML report to find out which loops are pipelined, and
for pipelined loops, what is their II.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following example:

kernel void simple_loop (unsigned N,
 global unsigned* restrict b,
 global unsigned* restrict c,
 global unsigned* restrict out)
{
 for (unsigned i = 1; i < N; i++) {
 c[i] = c[i-1] + b[i];
 }
 out[0] = c[N-1];
}

Figure 52. Hardware Datapath of the Kernel simple_loop

Load

i=3

i=2

i=1

Store

The figure depicts how the offline compiler uses loop pipelining to execute
simple_loop efficiently. The figure shows that the loop's datapath contains three
loop iterations at the same time. Therefore, this loop is pipelined. The figure also
shows that a new loop iteration enters the datapath every clock cycle. Therefore, the
loop has II=1.

Related Information

Single Work-Item Kernel versus NDRange Kernel on page 9

3.4.1. Trade-Off Between Initiation Interval and Maximum Frequency

The offline compiler attempts to achieve an II value of 1 for a given loop whenever
possible. In some cases, the offline compiler might strive for an II of 1 at the expense
of a reduced fMAX.

Consider the following example:

kernel void lowered_fmax (global int *dst, int N) {
 int res = N;
 #pragma unroll 9
 for (int i = 0; i < N; i++) {
 res += 1;
 res ^= i;
 }
 dst[0] = res;
 }

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure shows the datapath of the loop in kernel lowered_fmax. The
loop is partially unrolled by a factor of 9, so the datapath contains nine copies of the
original loop's body. To save space, only three of these copies are depicted in the
following figure:

Figure 53. Datapath of the Partially Unrolled Loop in Kernel lowered_fmax

1
1

. . .
unroll_inst_0

unroll_inst_1

unroll_inst_8

i

XOR
XOR

XOR
res_next

res

. . .i+1 i+8

1

The loop in kernel lowered_fmax has a loop-carried dependence involving the res
variable. This loop carried dependence forms a cycle in the loop's datapath, as shown
in Datapath of the Partially Unrolled Loop in Kernel lowered_fmax.

Note: The value of res from one iteration must be available when the next iteration is
launched. Therefore, if the loop is to achieve II=1, this cycle must contain at most one
register. This cycle contains a chain of nine additions and XORs, so fMAX must be
lowered in order for this chain of operations to complete within one clock cycle. The
offline compiler may lower the kernel's fMAX to achieve II=1, since II is an important
factor to achieving good performance. Consult the HTML report to find loops whose
loop carried dependencies limit fMAX.

3.4.2. Loop-Carried Dependencies that Affect the Initiation Interval of a
Loop

There are cases where a loop is pipelined but it does not achieve an II value of 1.
These cases are usually caused by data dependencies or memory dependencies within
a loop.

Data Dependencies

Data dependency refers to a situation where a loop iteration uses variables that rely
on the previous iteration. In this case, a loop can be pipelined, but its II value may be
greater than 1. Consider the following example:

 1 // An example that shows data dependency
 2 // choose(n, k) = n! / (k! * (n-k)!)
 3
 4 kernel void choose(unsigned n, unsigned k,
 5 global unsigned* restrict result)
 6 {
 7 unsigned product = 1;
 8 unsigned j = 1;
 9
10 for(unsigned i = k; i <= n; i++) {
11 product *= i;
12 if(j <= n-k) {
13 product /= j;
14 }
15 j++;
16 }

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

17
18 *result = product;
19 }

For every loop iteration, the value for the product variable in the kernel choose is
calculated by multiplying the current value of index i by the value of product from
the previous iteration. As a result, a new iteration of the loop cannot launch until the
current iteration finishes processing.

The loop in kernel choose has an II value of 12. This information can be found in the
Loop Analysis report. In addition, the details pane in the following figure shows that
the high II value is caused by a data dependency on product, and the largest
contributor to the critical path is the integer division operation on line 13.

Figure 56. Details Pane of the Loop Analysis Report for the Kernel choose

Memory Dependency

Memory dependency refers to a situation where memory access in a loop iteration
cannot proceed until memory access from the previous loop iteration is completed.
Consider the following example:

1 kernel void mirror_content(unsigned max_i,
2 global int* restrict out)
3 {
4 for (int i = 1; i < max_i; i++) {
5 out[max_i*2-i] = out[i];
6 }
7 }

In the loop analysis report, the details pane shows that the memory dependency is
between two load and store operations on line 5, and that the load operation takes
202 clock cycles.

Figure 58. Details Pane of the Loop Analysis for the Kernel mirror_content

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.3. Nested Loops

The Intel FPGA SDK for OpenCL Offline Compiler does not infer pipelined execution
because of the ordering of loop iterations. As a result, outer loop iterations might be
out of order with respect to the ensuing inner loops because the number of iterations
of the inner loops might differ for different out loop iterations.

To solve the problem of out-of-order outer loop iterations, design inner loops with
lower and upper bounds that do not change between outer loop iterations.

Single Work-Item Execution

To ensure high-throughput single work-item-based kernel execution on the FPGA, the
Intel FPGA SDK for OpenCL Offline Compiler must process multiple pipeline stages in
parallel at any given time. This parallelism is realized by pipelining the iterations of
loops.

Consider the following simple example code that shows accumulating with a single-
work item:

1 kernel void accum_swg (global int* a,
 global int* c,
 int size,
 int k_size) {
2 int sum[1024];
3 for (int k = 0; k < k_size; ++k) {
4 for (int i = 0; i < size; ++i) {
5 int j = k * size + i;
6 sum[k] += a[j];
7 }
8 }
9 for (int k = 0; k < k_size; ++k) {
10 c[k] = sum[k];
11 }
12 }

During each loop iteration, data values from the global memory a is accumulated to
sum[k]. In this example, the inner loop on line 4 has an initiation interval value of 1
with a latency of 11. The outer loop also has an initiation interval value greater than
or equal to 1 with a latency of 8.

Note: The launch frequency of a new loop iteration is called the initiation interval (II). II
refers to the number of hardware clock cycles for which the pipeline must wait before
it can process the next loop iteration. An optimally unrolled loop has an II value of 1
because one loop iteration is processed every clock cycle.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 60. System View of Single-Work Item Kernel

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure illustrates how each iteration of i enters into the block:

Figure 61. Inner Loop accum_swg.B2 Execution

L = 11

3

2

1

0
Location of loop iterations in the
hardware pipeline after first four
iterations have been launched.

Legend

When you observe the outer loop, having an II value of 1 also means that each
iteration of the thread can enter at every clock cycle. In the example, k_size of 20
and size of 4 is considered. This is true for the first eight clock cycles as outer loop
iterations 0 to 7 can enter without any downstream stalling it. Once thread 0 enters
into the inner loop, it takes four iterations to finish. Threads 1 to 8 cannot enter into
the inner loop and they are stalled for four cycles by thread 0. Thread 1 enters into
the inner loop after thread 0's iterations are completed. As a result, thread 9 enters
into the outer loop on clock cycle 13. Threads 9 to 20 enters into the loop at every
four clock cycles, which is the value of size. Through this example, you can observe
that the dynamic initiation interval of the outer loop is greater than the statically
predicted initiation interval of 1 and it is a function of the trip count of the inner loop.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Single Work-Item Execution

Nonlinear Execution

Loop structure does not support linear execution. The following code example shows
that the outer loop i contains two divergent inner loops. Each iteration of the outer
loop may execute one inner loop or the other, which is a nonlinear execution pattern.

__kernel void structure (__global unsigned* restrict output1,
 __global unsigned* restrict output2,
 int N) {
 for (unsigned i = 0; i < N; i++) {
 if ((i & 3) == 0) {
 for (unsigned j = 0; j < N; j++) {
 output1[i+j] = i * j;
 }
 }
 else
 {
 for (unsigned j = 0; j < N; j++) {
 output2[i+j] = i * j;
 }
 }
 }
}

Serial Regions

Serial region might occur in nested loops when an inner loop access causes an outer
loop dependency. The inner loop becomes a serial region in the outer loop iteration
due to data or memory dependencies.

At steady state, the II of outer loop = II of inner loop * trip count of inner loop. For
inner loops with II greater than 1 and outer loop that has no serially executed regions,
it is possible to interleave threads from the outer loop.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following code example:

kernel void serially_execute (global int * restrict A,
 global int * restrict B,
 global int * restrict result,
 unsigned N) {
 int sum = 0;
 for (unsigned i = 0; i < N; i++) {
 int res;
 for (int j = 0; j < N; j++) {
 sum += A[i*N+j];
 }
 sum += B[i];
 }
 *result = sum;
}

In the example, the dependence in the outer loop resulted in the serial execution of
the inner loop. The main difference in performance is the steady state II of outer loop
= II of inner loop * (trip count of inner loop - 1) + latency. In this example, II of inner
loop is 1 with latency of 4 and II of outer loop is 1 with latency of 7. If N is large, such
as 400, when compared to latency, then serial execution has little impact from the
outer loop II.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 63. System View of the Kernel

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Serial Execution

3.4.3.1. Reducing the Area Consumed by Nested Loops Using loop_coalesce

When loops are nested to a depth greater than three, more area is consumed.

Consider the following example where orig and lc_test kernels are used to
illustrate how to reduce latency in nested loops.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The orig kernel has nested loops to a depth of four. The nested loops created extra
blocks (Block 2, 3, 4, 6, 7 and 8) that consume area due to the variables being
carried, as shown in the following reports:

Figure 65. Area Report and System Viewer (System View) Before and After Loop
Coalescing

Latency 4

Latency 4

Latency 4

Latency 15

Kernel orig - before Kernel orig - before Kernel lc_test - after

All four variables are carried only for 15 cycles
since Block 1 has a latency of 15

Due to loop coalescing, you can see the reduced latency in the lc_test. The Block 5
of orig kernel and Block 12 of lc_test kernel are the inner most loops.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 66. Area Report of lc_test and orig Kernels
Kernel lc_test -- after

Kernel lc_test -- afterKernel orig -- before

Related Information

Coalescing Nested Loops

3.4.4. Loop Speculation

Loop speculation is an optimization technique that enables more efficient loop
pipelining by allowing future iterations to be initiated before determining whether the
loop was exited already. Consider the following simple loop example:

while (m*m*m < N) {
 m += 1;
}

Logically, the exit condition (m*m*m < N) for an iteration must be evaluated before
determining whether you need to initiate another iteration or not. This means that, in
the absence of speculation, the loop II cannot be lower than the number of cycles it
takes to compute this exit condition. Speculated iterations are iterations that launch
before the exit condition computation has completed. However, all operations with
side-effects, such as stores to memory, are predicated by the exit condition. This
means that operations with side-effects still waits for the exit condition to be
computed. Loop speculation is beneficial when the exit condition is the bottleneck
preventing from achieving a lower II. In the loop shown above, the exit condition
contains two multiplications that cannot complete within a single clock cycle. However,
loop speculation allows this loop to achieve II=1.

For example, for a given iteration i with exit condition Ei, the number of speculated
iterations s is the number of iterations after i has been initiated but before Ei has
been evaluated. By default, this number of speculated iterations is determined by the
compiler on a per-loop basis, and can be found in the per-loop details of the Loop
Analysis report.

The #pragma speculated_iterations pragma allows you to directly control the
number of speculated iterations for a loop. If the exit condition calculation is the
bottleneck to lowering II (as shown in the Loop Analysis report), increasing the

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

78

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-coalescing-loop-coalesce-pragma.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

number of speculated iterations may improve the II (this is not guaranteed as other
bottlenecks may be uncovered). For details about #pragma
speculated_iterations, refer to Loop Speculation in the Intel FPGA SDK for
OpenCL Programming Guide.

Speculated iterations introduce some overhead in nested loops, since a new invocation
of a loop may not begin until all speculated iterations of its previous invocation have
completed. In cases where a loop body with low latency is expected to be frequently
invoked, (for example, an inner loop with a short trip count), use the #pragma
speculated_iterations pragma to reduce the number of speculated iterations.
You can estimate the amount of this overhead by multiplying the number of
speculated iterations with the II of the loop (as shown in the Loop Analysis report).
Using the #pragma speculated_iterations pragma can reduce this overhead,
but be aware that choosing a pragma value that is too low may increase the II (due to
not having enough time to evaluate the exit condition).

Consider the following example:

kernel void unopt_int_cube_root (global int *dst, int N) {
 int m = 0;
 while (m*m*m < N) {
 m += 1;
 }
 dst[0] = m;
}

kernel void opt_int_cube_root (global int *dst, int N) {
 int m = 0;
 #pragma speculated_iterations 7
 while (m*m*m < N) {
 m += 1;
 }
 dst[0] = m;
}

kernel void unopt2_int_cube_root (global int *dst, int N) {
 int m = 0;
 #pragma speculated_iterations 0
 while (m*m*m < N) {
 m += 1;
 }
 dst[0] = m;
}

In this example, the exit condition that has two multiplies and a compare is the
bottleneck preventing II=1. The compiler's choice of four speculated iterations result
in II=2 since the exit condition takes seven cycles (each multiply takes three cycles
and the compare takes one cycle) and four speculated iterations times two-cycle II
gives eight cycles to cover this evaluation. Then, the speculated iterations are
increased to seven to cover the seven-cycle exit condition calculation allows us to
achieve II=1. By setting the speculated_iterations pragma to 0, you can verify
that the II has increased to 7, which matches the exit condition bottleneck.

Related Information

Loop Speculation

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

79

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-speculation-speculated-iterations.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-speculation-speculated-iterations.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.5. Loop Fusion

Loop fusion is a compiler transformation in which two adjacent loops are merged into
a single loop over the same index range. This transformation is typically applied to
reduce loop overhead and improve run-time performance.

The following example shows the effects of fusing loops in a simple case:

Unfused Loops Fused Loops

for (i = 0; i < 300; i++)
 a[i] = a[i] + 3;
for (i = 0; i < 300; i++)
 b[i] = b[i] + 4;

for (i = 0; i < 300; i++) {
 a[i] = a[i] + 3;
 b[i] = b[i] + 4;
}

Loop control structures represent a significant overhead. By fusing two loops, the
number of control structures needed for the loops is reduced from two to one,
reducing this overhead. The main goal of reducing the number of control structures is
to save FPGA area for your design while still maintaining (ideally increasing)
component throughput.

Fusing outer loops introduces concurrency where there was previously none.
Combining bodies of two adjacent loops (Lj and Lk) forms a single loop (Lf) with a loop
body that spans the bodies of Lj and Lk. This combined loop body creates an
opportunity for operations that are serialized across a given iteration of Lj and Lk to
execute concurrently. In effect, the two loops now execute as one, reducing latency.

If inner loops are fused, concurrency is already achieved by pipelined execution of the
outer loop iteration. In these cases, the concurrency effect of loop fusion is
diminished.

Fusion Criteria

The compiler considers the fusion of two loops (Lj and Lk) to be valid if the loops meet
the following criteria:

• The loops must be adjacent.

That is, you cannot have a statement Si with side-effects such that Si executes
after Lj and before Lk.

• Each loop must have a single-entry point and a single exit point. For example,
loops that contain break statements are not considered for fusion.

• The loops must have no negative-distance dependencies.

That is, for loops Lj and Lk where Lj is defined before Lk, iteration m of loop Lk
does not depend on values calculated in iteration m+n (where n>0) of loop Lj.

Automatic Loop Fusion

The Intel FPGA SDK for OpenCL Offline Compiler fuses loops with the same trip counts
automatically if the compiler analysis of your component determines that fusing the
loops is profitable.

Examples of where fusing loops is a valid transformation (based on the earlier criteria)
but are not considered profitable by the compiler include the following situations:

• One of the two loops, but not both, is annotated with the ivdep pragma.

• One of the two loops, but not both, contains stall-free logic.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Loop Analysis Report in the High-Level Design Reports indicates when loops are
fused.

In addition to automatic loop fusion, the Intel FPGA SDK for OpenCL Offline Compiler
provides two pragmas to help you control when loops are fused:

• loop_fuse pragma

Override the compiler profitability analysis and fuse adjacent loops if it is safe.

• nofusion pragma

Annotate loops with this pragma to request that the compiler not fuse the
annotated loop.

3.4.6. Loop Bottlenecks

Bottlenecks in a loop means one or more loop carried dependencies caused the
compiler to reduce the number of data items to be processed concurrently (in the
same clock cycle) or fMAX is reduced. Bottlenecks occur only on single work-item
kernels and are always created for loops.

Before analyzing the throughput of a simple loop, it is important to understand the
concept of dynamic initiation interval. The initiation interval (II) is the statically
determined number of cycles between successive iteration launches of a given loop
invocation. However, the statically scheduled II may differ from the actual realized
dynamic II when considering interleaving.

Note: Interleaving allows the iterations of more than one invocation of a loop to execute in
parallel, provided that the static II of that loop is greater than 1. By default, the
maximum amount of interleaving for a loop is equal to the static II of that loop.

In the presence of interleaving, the dynamic II of a loop can be approximated by the
static II of the loop divided by the degree of interleaving, that is, by the number of
concurrent invocations of the loop that are in flight.

Simple Loop Example

In a simple loop, the maximum number of data items to be processed concurrently
(also known as maximum concurrency) can be expressed as:

ConcurrencyMAX = (Block latency × Maximum interleaving iterations) / Initiation
Interval

Consider the following simple loop:

1 kernel void lowered_fmax (global int *dst, int N) {
2 int res = N;
3 #pragma unroll 9
4 for (int i = 0; i < N; i++) {
5 res += 1;
6 res ^= i;
7 }
8 dst[0] = res;
9 }

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

81

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/marking-loops-to-prevent-automatic-fusion.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/fusing-adjacent-loops-loop-fuse-pragma.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Loop Analysis report displays the following for the simple loop:

The for loop in line:4 has a latency of 6, maximum interleaving iterations of 1, and
initiation interval of 2. So, the maximum concurrency is 3 (latency of 6 / II of 2). The
bottleneck results from loop carried dependency caused by a data dependency on the
variable res. This is reported in the Bottlenecks viewer as shown in the following
image:

Another type of loop carried dependency is memory dependency, as shown in the
following example:

for (…)
 for (…)
 … = mem[x];
 mem[y] = …;

Nested Loop Example

In a nested loop, the maximum concurrency is more difficult to compute. For example,
the loop carried dependency in a nested loop does not necessarily affect the initiation
interval of the outer loop. Additionally, a nested loop often requires the knowledge of
the inner loop's trip count. Consider the following example:

1 __kernel void serial_exe_sample(__global unsigned* restrict input,
2 __global unsigned* restrict output,
3 int N) {
4 unsigned offsets[1024];
5 unsigned size[1024];
6 unsigned results[4];
7 for (unsigned i = 0; i < N; i++) {
8 offsets[i] = input[i];
9 }
10
11 for (unsigned i = 1; i < (N-1); i++) {
12 unsigned num = offsets[i];
13 unsigned sum = 0;
14 // There's a memory dependency, so the inner loops are executed
15 // serially, i.e. the both loops finish before the next iteration

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

16 // of i in the outer loop can start.
17 for (unsigned j = 0; j < num; j++) {
18 size[j] = offsets[i+j] - offsets[i+j-1];
19 }
20 for (unsigned j = 0; j < 4; j++) {
21 results[j] = size[j];
22 }
23 }
24
25 // store it back
26 #pragma unroll 1
27 for (unsigned i = 0; i < 4; i++) {
28 output[i] = results[i];
29 }
30 }

In this example, the bottleneck is resulted from loop carried dependency caused by a
memory dependency on the variable size. The size variable must finish loading in
the loop in line:20 before the next outer loop (line:11) iteration can be launched.
Therefore, the maximum concurrency of the outer loop is 1. This information is
reported in the details sections of the Loop Analysis and Schedule Viewer reports.

Addressing Bottlenecks

To address the bottlenecks, primarily consider restructuring your design code.

After restructuring, consider applying the following loop pragmas or attributes on
arrays:

• #pragma II. See Specifying a loop initiation interval (II) in the Intel FPGA SDK
for OpenCL Programming Guide

• #pragma ivdep safelen. See Removing Loop-Carried Dependencies Caused by
Accesses to Memory Arrays on page 132

• #pragma max_concurrency. See Loop Interleaving Control in the Intel FPGA
SDK for OpenCL Programming Guide

• attribute private_copies. See Specifying the private_copies Memory
Attribute in the Intel FPGA SDK for OpenCL Programming Guide

Consider the previous Simple Loop Example on page 81 where the concurrency is 3 as
the initiation interval is 2. Applying #pragma II 1, as shown in the following code
snippet, comes at the expense of lowered predicted fMAX from 90MHz to 50MHz:

1 kernel void lowered_fmax (global int *dst, int N) {
2 int res = N;
3 #pragma unroll 9
4 #pragma ii 1
5 for (int i = 0; i < N; i++) {
6 res += 1;
7 res ^= i;
8 }
9 dst[0] = res;
10 }

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

83

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/specifying-a-loop-initiation-interval-ii.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/loop-interleaving-control-max-interleaving.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/specifying-the-private-copies-memory.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/specifying-the-private-copies-memory.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Reviewing Loop Information on page 33

• Features of the Schedule Viewer on page 31

3.5. Channels

The Intel FPGA SDK for OpenCL's channel implementation provides a flexible way to
pass data from one kernel to another kernel to improve performance.

When declaring a channel in your kernel code, precede the declaration with the
keyword channel.

For example:

channel long16 myCh __attribute__((depth(16)));

In the HTML report, the area report maps the channel area to the declaration line in
the source code. Channels and channel arrays are reported with their width and depth.

Note: The implemented channel depth can differ from the depth that you specify in the
channel declaration. The Intel FPGA SDK for OpenCL Offline Compiler can implement
the channel in shift registers or RAM blocks. The offline compiler decides on the type
of channel implementation based on the channel depth.

The depth attribute is treated as the minimum depth specification. The offline
compiler may increase the depth for the following reasons:

• Instruction scheduling requirements. This may happen due to the following
reasons:

— To balance reconverging paths through multiple kernels.

When multiple paths exist from one kernel to another via channels and other
kernels, the depths on these channels may be increased to balance latencies
among all these paths. This is a throughput optimization, as unbalanced paths
are likely to lead to pipeline stalls.

— To achieve a lower II for a loop containing a non-blocking write to a channel.

The offline compiler may increase the depth of the channel in order to achieve
a lower loop II.

Consider the following loop that reads next_val from the global memory only
if the non-blocking write to my_channel succeeded in the previous iteration.

bool write_valid = true;
int next_val = 0;
while (not_done) {

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if (write_valid) {
 next_val = *global_mem_ptr;
 global_mem_ptr++;
 }
 write_valid = write_channel_nb_intel(my_channel, next_val);
 not_done = some_fn(next_val);
}

With a naive implementation, this loop has a very high II because the high-
latency global memory read must complete before the write into the channel
can begin and the next value of write_valid is computed. To remove the
global read from the II-critical path, the compiler can instead check if
my_channel has space to accept whatever value is read from the global
memory before doing the actual global read. The check for channel fullness
takes one clock cycle and hence, the next loop iteration can start as soon as
the channel fullness check is complete, giving II=1 for this loop. To make the
resulting hardware functionally correct, the channel must be deepened by the
latency of the global read or, to be precise, schedule distance between the
channel fullness check and the actual write, which may be slightly greater
than the global read. If you do not want to have your channel deepened in this
situation, identify and remove the loop-carried dependency involving a valid
return valid from the write_channel_nb_intel() call.

• The nature of the underlying FIFO implementation. This happens if the chosen
underlying implementation cannot support the exact depth required and must be
increased to the next supported size.

3.6. Load-Store Units

The Intel FPGA SDK for OpenCL Offline Compiler generates a number of different
types of load-store units (LSUs). For some types of LSU, the compiler might modify
the LSU behavior and properties depending on the memory access pattern and other
memory attributes.

Tip: For Intel oneAPI DPC++/C++ Compiler-specific details, refer to Load-Store Units
section in the FPGA Optimization Guide for Intel oneAPI Toolkits.

3.6.1. Load-Store Unit Types

The compiler can generate several different types of load-store units (LSUs) based on
the inferred memory access pattern, the types of memory available on the target
platform, and whether the memory accesses are to local or global memory.The Intel
FPGA SDK for OpenCL Offline Compiler can generate the following types of LSU:

• Burst-Coalesced Load-Store Units on page 86

• Prefetching Load-Store Units on page 86

• Pipelined Load-Store Units on page 86

• Constant-Pipelined Load-Store Units on page 87

• Atomic-Pipelined Load-Store Units on page 87

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

85

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/memory-accesses/load-store-units.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Burst-Coalesced Load-Store Units

A burst-coalesced LSU is the default LSU type instantiated by the compiler for
accessing global memory. It buffers requests until the largest possible burst can be
made. The burst-coalesced LSU can provide efficient access to global memory, but it
requires a considerable amount of FPGA resources.

kernel void burst_coalesced (global int * restrict in,
 global int * restrict out) {
 int i = get_global_id(0);
 int value = in[i/2]; // Burst-coalesced LSU
 out[i] = value;
}

Depending on the memory access pattern and other attributes, the compiler might
modify a burst-coalesced LSU in the following ways:

• Cached

• Write-Acknowledge (write-ack)

• Nonaligned

Prefetching Load-Store Units

A prefetching LSU instantiates a FIFO which burst reads large blocks from memory to
keep the FIFO full of valid data based on the previous address and assuming
contiguous reads. Non-contiguous reads are supported, but a penalty is incurred to
flush and refill the FIFO. A prefetching LSU is inferred only for non-volatile global
pointers.

kernel void prefetching (global int * restrict in,
 global int * restrict out,
 int N) {
 int res = 1;
 for (int i = 0; i < N; i++) {
 int v = in[i]; // Prefetching LSU
 res ^= v;
 }
 out[0] = res;
}

Pipelined Load-Store Units

A pipelined LSU is used for accessing local memory. Requests are submitted as soon
as they are received. Memory accesses are pipelined, so multiple requests can be in
flight at a time. If there is no arbitration between the LSU and the local memory, a
pipelined never-stall LSU is created.

__attribute((reqd_work_group_size(1024,1,1)))
kernel void local_pipelined (global int* restrict in,
 global int* restrict out) {
 local int lmem[1024];
 int gi = get_global_id(0);
 int li = get_local_id(0);

 int res = in[gi];
 for (int i = 0; i < 4; i++) {
 lmem[li - i] = res; // pipelined LSU
 res >>= 1;
 }

 barrier(CLK_GLOBAL_MEM_FENCE);

 res = 0;

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 for (int i = 0; i < 4; i++) {
 res ^= lmem[li - i]; // pipelined LSU
 }

 out[gi] = res;
}

The compiler might modify a local-pipelined LSU in the following way:

• Never-stall

The compiler may also infer a pipelined LSU for global memory accesses that can be
proven to be infrequent. The compiler uses a pipelined LSU for such accesses because
a pipelined LSU is smaller than other LSU types. While a pipelined LSU might have
lower throughput, this throughput tradeoff is acceptable because memory accesses
are infrequent.

kernel void global_infrequent (global int * restrict in,
 global int * restrict out,
 int N) {
 int a = 0;
 if (get_global_id(0) == 0)
 a = in[0]; // Pipelined LSU
 for (int i = 0; i < N; i++) {
 out[i] = in[i] + a;
 }
}

Constant-Pipelined Load-Store Units

A constant-pipelined LSU is a pipelined LSU that is used mainly to read from the
constant cache. The constant-pipelined LSU consumes less area than a burst-
coalesced LSU. The throughput of a constant-pipelined LSU depends greatly on
whether the reads hit in the constant cache. Cache misses are expensive.

 kernel void constant_pipelined (constant int *src,
 global int *dst) {
 int i = get_global_id(0);
 dst[i] = src[i]; // Constant pipelined LSU
}

For information about the constant cache, see Constant Cache Memory on page 151.

Atomic-Pipelined Load-Store Units

An atomic-pipelined LSU is used for all atomic operations. Using atomic operations can
significantly reduce kernel performance.

kernel void atomic_pipelined (global int* restrict out) {
 atomic_add(&out[0], 1); // Atomic LSU
}

3.6.2. Load-Store Unit Modifiers

Depending on the memory access pattern in your kernel, the compiler modifies some
LSUs.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Cached

Burst-coalesced LSUs might sometimes include a cache. A cache is created when the
memory access pattern is data-dependent or appears to be repetitive. The cache
cannot be shared with other loads even if the loads want the same data. The cache is
flushed on kernel start and consumes more hardware resources than an equivalent
LSU without a cache. The cache is inferred only for non-volatile global pointers.

kernel void cached (global int * restrict in,
 global int * restrict out,
 int N) {
 int gid = get_global_id(0);
 for (int i = 0; i < N; i++) {
 out[N*gid + i] = in[i];
 }
}

Write-Acknowledge (write-ack)

Burst-coalesced store LSUs sometimes require a write-acknowledgment signal when
data dependencies exist. LSUs with a write-acknowledge signal require additional
hardware resources. Throughput might be reduced if multiple write-acknowledge LSUs
access the same memory.

kernel void write_ack (global int * restrict in,
 global int * restrict out,
 int N) {
 for (int i = 0; i < N; i++) {
 if (i < 2)
 out[i] = 0; // Burst-coalesced write-ack LSU
 out[i] = in[i];
 }
}

Nonaligned

When a burst-coalesced LSU can access memory that is not aligned to the external
memory word size, a nonaligned LSU is created. Additional hardware resources are
required to implement a nonaligned LSU. The throughput of a nonaligned LSU might
be reduced if it receives many unaligned requests.

kernel void non_aligned (global int * restrict in,
 global int * restrict out) {
 int i = get_global_id(0);

 // Three loads are statically coalesced into one,
 // creating a burst-coalesced non-aligned LSU.
 int a1 = in[3*i+0];
 int a2 = in[3*i+1];
 int a3 = in[3*i+2];

 // Three stores statically coalesced into one,
 // creating a burst-coalesced non-aligned LSU.
 out[3*i+0] = a3;
 out[3*i+1] = a2;
 out[3*i+2] = a1;
}

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Never-stall

If a pipelined LSU is connected to a local memory without arbitration, a never-stall
LSU is created because all accesses to the memory take a fixed number of cycles that
are known to the compiler.

__attribute((reqd_work_group_size(1024,1,1)))
kernel void never_stall (global int* restrict in,
 global int* restrict out,
 int N) {
 local int lmem[1024];
 int gi = get_global_id(0);
 int li = get_local_id(0);

 lmem[li] = in[gi]; // Pipelined never-stall LSU
 barrier(CLK_GLOBAL_MEM_FENCE);
 out[gi] = lmem[li] ^ lmem[li + 1];
}

3.6.3. Controlling the Load-Store Units

The Intel FPGA SDK for OpenCL Offline Compiler allows you to control the type of LSU
that is being generated for global memory accesses via a set of built-in calls that you
can use for loading from and storing to global memory.

Load Built-ins

The variations of the load built-in are summarized in the following table:

Table 10. Load Built-ins

Built-in LSU Type Implemented

__pipelined_load() Pipelined if possible

__prefetching_load() Prefetching if possible

__burst_coalesced_load() Burst-coalesced

__burst_coalesced_cached_load() Burst-coalesced cached if possible

All variations expect the following arguments:

Table 11. Load Built-in Arguments

Built-in Type Description

Argument #1 Pointer Memory location to load from.

Argument #2 Integer • Available only for __burst_coalesced_cached_load()
function.

• Describes the LSU cache size in bytes.
• Non-negative compile-time constant integer.

Return value Object • Data that the pointer argument points to.
• Same type as the base type of the pointer argument.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Store Built-ins

The variations of the store built-in are summarized in the following table:

Table 12. Store Built-ins

Built-in LSU Type Implemented

__pipelined_store() Pipelined if possible

__burst_coalesced_store() Burst-coalesced

All variations expect the following arguments:

Table 13. Store Built-in Arguments

Built-in Type Description

Argument #1 Pointer Memory location to store to.

Argument #2 Same as the pointer's
base type

Value to be stored.

Note: All variations of the store built-in are non-value-returning.

Example

Following is an OpenCL example depicting different variations of the load and the store
built-ins:

kernel void oclTest(global int * restrict in,
 global int * restrict out) {
 int i = get_global_id(0);

 int a1 = __pipelined_load(in + 3*i+0); // Uses a pipelined LSU
 // Uses a burst-coalesced LSU with a cache of size 1024 bytes
 int a2 = __burst_coalesced_cached_load(&in[3*i+1], 1024);
 int a3 = __prefetching_load(&in[3*i+2]); // Uses a prefetching LSU

 __burst_coalesced_store(&out[3*i+0], a3); // Uses a burst-coalesced LSU
}

Note: • The compiler does not allow you to select an LSU that may cause functionally
incorrect results in the context in which it is being requested. For example, if you
request a prefetching LSU on a volatile pointer, the compiler errors out. The
compiler also errors out if caching is requested in a situation where the cache
(which is local to the LSU) may become incoherent due to other LSUs writing to
memory.

• The prefetching LSU is not available on the Intel Stratix® 10 device.

3.6.4. When to Use Each LSU

You can decide between different LSUs to use either based on what you know about
the access patterns of your load/store site or on your silicon area requirements.The
following are the LSU styles in an increasing order of their area requirements:

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Pipelined LSU (load/store): It is area efficient but it can be slower than other
LSUs. You should use this LSU if you are constricted on area or if your access
patterns are not necessarily consecutive.

2. Prefetching LSU (only for loads): It is also area efficient but it is perfect for
fully consecutive access patterns. There is a throughput penalty for using it for
non-consecutive access patterns, so, use it only if you know that the addresses
accessed are strictly consecutive.

3. Burst-coalesced LSU (load/store): It is expensive in area but can process
consecutive access patterns very efficiently. There is an area penalty for checking
whether the access patterns are consecutive or not. The LSU dynamically attempts
to combine several kernel requests into one big burst spanning multiple memory
words, if possible.

4. Burst-coalesced cached LSU (only for loads): It is the most expensive in area
because it contains an extra cache that is local to the LSU. It can help the
throughput in cases where you intend to read the same location in memory
multiple times, especially across multiple ND-range threads.

3. OpenCL Kernel Design Concepts

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. OpenCL Kernel Design Best Practices
With the Intel FPGA SDK for OpenCL Offline Compiler technology, you do not need to
change your kernel to fit it optimally into a fixed hardware architecture. Instead, the
offline compiler customizes the hardware architecture automatically to accommodate
your kernel requirements.

In general, you should optimize a kernel that targets a single compute unit first. After
you optimize this compute unit, increase performance by scaling the hardware to fill
the remainder of the FPGA by increasing the number of compute units. For more
information, refer to Multiple Compute Units on page 140. The area use of the kernel
correlates with the time it takes for hardware compilation. Therefore, to avoid waiting
for long hardware compiles, focus on optimizing the performance of your kernel on a
single compute unit first.

For important best practices for optimizing kernel performance, including data
processing and memory access optimizations, read through the remaining chapters of
this guide. The remainder of this chapter covers the following list of additional best
practices. Consider implementing the following design practices, if applicable, when
your create your kernels.

Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes on page
92

Unrolling Loops on page 97

Optimizing Floating-Point Operations on page 99

Allocating Aligned Memory on page 102

Aligning a Struct with or without Padding on page 103

Maintaining Similar Structures for Vector Type Elements on page 105

Avoiding Pointer Aliasing on page 105

Avoid Expensive Functions on page 106

Avoiding Work-Item ID-Dependent Backward Branching on page 107

4.1. Transferring Data Via Intel FPGA SDK for OpenCL Channels or
OpenCL Pipes

To increase data transfer efficiency between kernels, implement the Intel FPGA SDK
for OpenCL channels extension in your kernel programs. If you want to use the
capabilities of channels but also have the ability to run your kernel program using
other SDKs, implement OpenCL pipes.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Sometimes, FPGA-to-global memory bandwidth constrains the data transfer efficiency
between kernels. The theoretical maximum FPGA-to-global memory bandwidth varies
depending on the number of global memory banks available in the targeted Custom
Platform and board. To determine the theoretical maximum bandwidth for your board,
refer to your board vendor's documentation.

In practice, a kernel does not achieve 100% utilization of the maximum global
memory bandwidth available. The level of utilization depends on the access pattern of
the algorithm.

If global memory bandwidth is a performance constraint for your OpenCL kernel, first
try to break down the algorithm into multiple smaller kernels. Secondly, as shown in
the figure below, eliminate some of the global memory accesses by implementing the
SDK's channels or OpenCL pipes for data transfer between kernels.

Figure 68. Difference in Global Memory Access Pattern as a Result of Channels or Pipes
Implementation

Global Memory

Kernel 1 Kernel 4Kernel 2 Kernel 3
Write

Read
Read

Read
Read

WriteWriteWrite

Global Memory

Kernel 1 Kernel 4Kernel 2 Kernel 3

Read

Write

Channel/Pipe Channel/Pipe

Global Memory Access Pattern Before Intel FPGA SDK for OpenCL Channels or Pipes Implementation

Global Memory Access Pattern After Intel FPGA SDK for OpenCL Channels or Pipes Implementation

Channel/Pipe

For more information about the usage of channels, refer to the Implementing Intel
FPGA SDK for OpenCL Channels Extension section of the Intel FPGA SDK for OpenCL
Programming Guide.

For more information about the usage of pipes, refer to the Implementing OpenCL
Pipes section of the Intel FPGA SDK for OpenCL Programming Guide.

Related Information

• Implementing Intel FPGA SDK for OpenCL Channels Extension

• Implementing OpenCL Pipes

4.1.1. Characteristics of Channels and Pipes

To implement channels or pipes in your OpenCL kernel program, keep in mind their
respective characteristics that are specific to the Intel FPGA SDK for OpenCL.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

93

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/implementing-the-channels-extension.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/implementing-opencl-pipes.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Default Behavior

The default behavior of channels is blocking. The default behavior of pipes is
nonblocking.

Concurrent Execution of Multiple OpenCL Kernels

You can execute multiple OpenCL kernels concurrently. To enable concurrent
execution, modify the host code to instantiate multiple command queues. Each
concurrently executing kernel is associated with a separate command queue.

Important: Pipe-specific considerations:

The OpenCL pipe modifications outlined in Ensuring Compatibility with Other OpenCL
SDKs in the Intel FPGA SDK for OpenCL Programming Guide allow you to run your
kernel on the SDK. However, they do not maximize the kernel throughput. The
OpenCL Specification version 2.0 requires that pipe writes occur before pipe reads so
that the kernel is not reading from an empty pipe. As a result, the kernels cannot
execute concurrently. Because the Intel FPGA SDK for OpenCL supports concurrent
execution, you can modify your host application and kernel program to take advantage
of this capability. The modifications increase the throughput of your application;
however, you can no longer port your kernel to another SDK. Despite this limitation,
the modifications are minimal, and it does not require much effort to maintain both
types of code.

To enable concurrent execution of kernels containing pipes, replace the depth
attribute in your kernel code with the blocking attribute (that is,
__attribute__((blocking))). The blocking attribute introduces a blocking
behavior in the read_pipe and write_pipe function calls. The call site blocks kernel
execution until the other end of the pipe is ready.

If you add both the blocking attribute and the depth attribute to your kernel, the
read_pipe calls only a block when the pipe is empty, and the write_pipe calls only
a block when the pipe is full. Blocking behavior causes an implicit synchronization
between the kernels, which forces the kernels to run in lock step with each other.

Implicit Kernel Synchronization

Synchronize the kernels implicitly via blocking channel calls or blocking pipe calls.
Consider the following examples:

Table 14. Blocking Channel and Pipe Calls for Kernel Synchronization

Kernels with Blocking Channel Call Kernels with Blocking Pipe Call

channel int c0;

__kernel
void producer (__global int * in_buf)
{
 for (int i = 0; i < 10; i++)
 {
 write_channel_intel (c0, in_buf[i]);
 }
}

__kernel
void consumer (__global int * ret_buf)
{
 for (int i = 0; i < 10; i++)
 {

__kernel
void producer (__global int * in_buf,
 write_only pipe int __attribute__
 ((blocking)) c0)
{
 for (int i = 0; i < 10; i++)
{
 write_pipe (c0, &in_buf[i]);
 }
}

__kernel
void consumer (__global int * ret_buf,
 read_only pipe int __attribute__
 ((blocking)) c0)
{
 for (int i = 0; i < 10; i++)
 {

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Kernels with Blocking Channel Call Kernels with Blocking Pipe Call

 ret_buf[i] = read_channel_intel(c0);
 }
}

 int x;
 read_pipe (c0, &x);
 ret_buf[i] = x;
 }
}

You can synchronize the kernels such that a producer kernel writes data and a
consumer kernel reads the data during each loop iteration. If the
write_channel_intel or write_pipe call in producer does not write any data,
consumer blocks and waits at the read_channel_intel or read_pipe call until
producer sends valid data, and vice versa.

Data Persistence Across Invocations

After the write_channel_intel call writes data to a channel or the write_pipe
call writes data to a pipe, the data is persistent across work-groups and NDRange
invocations. Data that a work-item writes to a channel or a pipe remains in that
channel or pipe until another work-item reads from it. In addition, the order of data in
a channel or a pipe is equivalent to the sequence of write operations to that channel or
pipe, and the order is independent of the work-item that performs the write operation.

For example, if multiple work-items try to access a channel or a pipe simultaneously,
only one work-item can access it. The write_channel_intel call or write_pipe
call writes the particular work-item data, called DATAX, to the channel or pipe,
respectively. Similarly, the first work-item to access the channel or pipe reads DATAX
from it. This sequential order of read and write operations makes channels and pipes
an effective way to share data between kernels.

Imposed Work-Item Order

The SDK imposes a work-item order to maintain the consistency of the read and write
operations for a channel or a pipe.

Related Information

Ensuring Compatibility with Other OpenCL SDKs

4.1.2. Execution Order for Channels and Pipes

Each channel or pipe call in a kernel program translates into an instruction executed in
the FPGA pipeline. The execution of a channel call or a pipe call occurs if a valid work-
item executes through the pipeline. However, even if there is no control or data
dependence between channel or pipe calls, their execution might not achieve perfect
instruction-level parallelism in the kernel pipeline.

Consider the following code examples:

Table 15. Kernel with Two Read Channel or Pipe Calls

Kernel with Two Read Channel Calls Kernel with Two Read Pipe Calls

__kernel void
consumer (__global uint*restrict dst) {
 for (int i = 0; i < 5; i++) {
 dst[2*i] = read_channel_intel(c0);
 dst[2*i+2] = read_channel_intel(c1);
 }
}

__kernel void
consumer (__global uint*restrict dst,
 read_only pipe uint
 __attribute__((blocking)) c0,
 read_only pipe uint
 __attribute__((blocking)) c1)
{
 for (int i = 0; i < 5; i++) {

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

95

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/ensuring-compatibility-with-other-opencl.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Kernel with Two Read Channel Calls Kernel with Two Read Pipe Calls

 read_pipe (c0, &dst[2*i]);
 read_pipe (c1, &dst[2*i+2]);
 }
}

The code example on the left makes two read channel calls. The code example on the
right makes two read pipe calls. In most cases, the kernel executes these channel or
pipe calls in parallel; however, channel and pipe call executions might occur out of
sequence. Out-of-sequence execution means that the read operation from c1 can
occur and complete before the read operation from c0.

4.1.3. Optimizing Buffer Inference for Channels or Pipes

In addition to the manual addition of buffered channels or pipes, the Intel FPGA SDK
for OpenCL Offline Compiler improves kernel throughput by adjusting buffer sizes
whenever possible.

During compilation, the offline compiler computes scheduling mismatches between
interacting channels or pipes. These mismatches might cause imbalances between
read and write operations. The offline compiler performs buffer inference optimization
automatically to correct the imbalance.

Consider the following examples:

Table 16. Buffer Inference Optimization for Channels and Pipes

Kernels with Channels Kernels with Pipes

__kernel void producer (
 __global const uint * restrict src,
 const uint iterations)
{
 for(int i = 0; i < iteration; i++)
 {
 write_channel_intel(c0,src[2*i]);
 write_channel_intel(c1,src[2*i+1]);
 }
}

__kernel void consumer (
 __global uint * restrict dst,
 const uint iterations)
{
 for(int i = 0; i < iterations; i++)
 {
 dst[2*i] = read_channel_intel(c0);
 dst[2*i+1] = read_channel_intel(c1);
 }
}

__kernel void producer (
 __global const uint * restrict src,
 const uint iterations,
 write_only pipe uint
 __attribute__((blocking)) c0,
 write_only pipe uint
 __attribute__((blocking)) c1)
{
 for(int i = 0; i < iteration; i++)
 {
 write_pipe(c0,&src[2*i]);
 write_pipe(c1,&src[2*i+1]);
 }
}

__kernel void consumer (
 __global uint * restrict dst,
 const uint iterations,
 read_only pipe uint
 __attribute__((blocking)) c0,
 read_only pipe uint
 __attribute__((blocking)) c1)
{
 for(int i = 0; i < iterations; i++)
 {
 read_pipe(c0,&dst[2*i]);
 read_pipe(c1,&dst[2*i+1]);
 }
}

The offline compiler performs buffer inference optimization if channels or pipes
between kernels cannot form a cycle. A cycle between kernels is a path that originates
from a kernel, through a write channel or a write pipe call, and returns to the original
kernel. For the example, assume that the write channel or write pipe calls in the
kernel producer are scheduled 10 cycles apart and the read channel or read pipe
calls are scheduled 15 cycles apart. There exists a temporary mismatch in the read
and write operations to c1 because five extra write operations might occur before a

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

read operation to c1 occurs. To correct this imbalance, the offline compiler assigns a
buffer size of five cycles to c1 to avoid stalls. The extra buffer capacity decouples the
c1 write operations in the producer kernel and the c1 read operations in the
consumer kernel.

4.1.4. Best Practices for Channels and Pipes

Consider the following best practices when designing channels and pipes:

• Use single-threaded kernels over multi-threaded kernels.

• Consider how the design model can be represented with a feed forward datapath,
for example, back-to-back loops or discrete processing steps. Determine whether
you should split the design into multiple kernels connected by channels.

• Aggregate data on channels only when the entire data is used at the same point of
kernel.

• Attempt to keep the number of channels per kernel reasonable.

• Do not use non-blocking channels or pipes if you are using a looping structure
waiting for the data. Non-blocking channels consume more resources than the
blocking channels.

4.2. Unrolling Loops

You can control the way the Intel FPGA SDK for OpenCL Offline Compiler translates
OpenCL kernel descriptions to hardware resources. If your OpenCL kernel contains
loop iterations, increase performance by unrolling the loop. Loop unrolling decreases
the number of iterations that the offline compiler executes at the expense of increased
hardware resource consumption.

Tip: For Intel oneAPI DPC++/C++ Compiler-specific details, refer to Unroll Loops topic in
the FPGA Optimization Guide for Intel oneAPI Toolkits.

Consider the OpenCL code for a parallel application in which each work-item is
responsible for computing the accumulation of four elements in an array:

__kernel void example (__global const int * restrict x,
 __global int * restrict sum) {
 int accum = 0;

 for (size_t i = 0; i < 4; i++) {
 accum += x[i + get_global_id(0) * 4];
 }

 sum[get_global_id(0)] = accum;
}

Notice the following three main operations that occur in this kernel:

• Load operations from input x

• Accumulation

• Store operations to output sum

The offline compiler arranges these operations in a pipeline according to the data flow
semantics of the OpenCL kernel code. For example, the offline compiler implements
loops by forwarding the results from the end of the pipeline to the top of the pipeline,
depending on the loop exit condition.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

97

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/unroll-loops.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The OpenCL kernel performs one loop iteration of each work-item per clock cycle. With
sufficient hardware resources, you can increase kernel performance by unrolling the
loop, which decreases the number of iterations that the kernel executes. To unroll a
loop, add a #pragma unroll directive to the main loop, as shown in the code
example below. Keep in mind loop unrolling significantly changes the structure of the
compute unit that the offline compiler creates.

__kernel void example (__global const int * restrict x,
 __global int * restrict sum) {
 int accum = 0;

 #pragma unroll
 for (size_t i = 0; i < 4; i++) {
 accum += x[i + get_global_id(0) * 4];
 }

 sum[get_global_id(0)] = accum;
}

In this example, the #pragma unroll directive causes the offline compiler to unroll
the four iterations of the loop completely. To accomplish the unrolling, the offline
compiler expands the pipeline by tripling the number of addition operations and
loading four times more data. With the removal of the loop, the compute unit assumes
a feed-forward structure. As a result, the compute unit can store the sum elements
every clock cycle after the completion of the initial load operations and additions. The
offline compiler further optimizes this kernel by coalescing the four load operations so
that the compute unit can load all the necessary input data to calculate a result in one
load operation.

Caution: Avoid nested looping structures. Instead, implement a large single loop or unroll inner
loops by adding the #pragma unroll directive whenever possible.

For example, if you compile a kernel that has a heavily-nested loop structure, wherein
each loop includes a #pragma unroll directive, you might experience a long
compilation time. The Intel FPGA SDK for OpenCL Offline Compiler might fail to meet
scheduling because it cannot unroll this nested loop structure easily, resulting in a
high II. In this case, the offline compiler issues the following error message along with
the line number of the outermost loop:
Kernel <function> exceeded the Max II. The Kernel's resource
usage is estimated to be much larger than FPGA capacity. It
performs poorly even if it fits. Reduce resource utilization of
the kernel by reducing loop unroll factors within it (if any) or
otherwise reduce amount of computation within the kernel.

Unrolling the loop and coalescing the load operations from global memory allow the
hardware implementation of the kernel to perform more operations per clock cycle. In
general, the methods you use to improve the performance of your OpenCL kernels
should achieve the following results:

• Increase the number of parallel operations

• Increase the memory bandwidth of the implementation

• Increase the number of operations per clock cycle that the kernels can perform in
hardware

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The offline compiler might not be able to unroll a loop completely under the following
circumstances:

• You specify complete unrolling of a data-dependent loop with a very large number
of iterations. Consequently, the hardware implementation of your kernel might not
fit into the FPGA.

• You specify complete unrolling and the loop bounds are not constants.

• The loop consists of complex control flows (for example, a loop containing
complex array indexes or exit conditions that are unknown at compilation time).

For the last two cases listed above, the offline compiler issues the following warning:

Full unrolling of the loop is requested but the loop bounds
cannot be determined. The loop is not unrolled.

To enable loop unrolling in these situations, specify the #pragma unroll <N>
directive, where <N> is the unroll factor. The unroll factor limits the number of
iterations that the offline compiler unrolls. For example, to prevent a loop in your
kernel from unrolling, add the directive #pragma unroll 1 to that loop.

Refer to Good Design Practices for Single Work-Item Kernel for tips on constructing
well-structured loops.

Related Information

Good Design Practices for Single Work-Item Kernel on page 134

4.3. Optimizing Floating-Point Operations

For floating-point operations, you can manually direct the Intel FPGA SDK for OpenCL
Offline Compiler to perform optimizations that create more efficient pipeline structures
in hardware and reduce the overall hardware usage. These optimizations can cause
small differences in floating-point results.

Tip: For more oneAPI DPC++-specific details, refer to Optimize Floating-point Operation
topic in the FPGA Optimization Guide for Intel oneAPI Toolkits.

Tree Balancing

Order of operation rules apply in the OpenCL language. In the following example, the
offline compiler performs multiplications and additions in a strict order, beginning with
operations within the innermost parentheses:

result = (((A * B) + C) + (D * E)) + (F * G);

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

99

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/resource-use/data-types-and-operations/optimize-floating-point-operation.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the offline compiler creates an implementation that resembles a long vine
for such computations:

Figure 69. Default Floating-Point Implementation

+

+

+

A

G

DC

B

E

Result

F

Long, unbalanced operations lead to more expensive hardware. A more efficient
hardware implementation is a balanced tree, as shown below:

Figure 70. Balanced Tree Floating-Point Implementation

++

+

A D

C

E FB G

Result

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In a balanced tree implementation, the offline compiler converts the long vine of
floating-point adders into a tree pipeline structure. The offline compiler does not
perform tree balancing of floating-point operations automatically because the
outcomes of the floating-point operations might differ. As a result, this optimization is
inconsistent with the IEEE Standard 754-2008.

If you want the offline compiler to optimize floating-point operations using balanced
trees and your program can tolerate small differences in floating-point results, include
the -fp-relaxed option in the aoc command, as shown below:

aoc -fp-relaxed <your_kernel_filename>.cl

Rounding Operations

The balanced tree implementation of a floating-point operation includes multiple
rounding operations. These rounding operations can require a significant amount of
hardware resources in some applications. The offline compiler does not reduce the
number of rounding operations automatically because doing so violates the results
required by IEEE Standard 754-2008.

You can reduce the amount of hardware necessary to implement floating-point
operations with the -fpc option of the aoc command. If your program can tolerate
small differences in floating-point results, invoke the following command:

aoc -fpc <your_kernel_filename>.cl

The -fpc option directs the offline compiler to perform the following tasks:

• Remove floating-point rounding operations and conversions whenever possible.

If possible, the -fpc argument directs the offline compiler to round a floating-
point operation only once—at the end of the tree of the floating-point operations.

• Carry additional mantissa bits to maintain precision.

The offline compiler carries additional precision bits through the floating-point
calculations, and removes these precision bits at the end of the tree of floating-
point operations.

This type of optimization results in hardware that performs a fused floating-point
operation, and it is a feature of many new hardware processing systems. Fusing
multiple floating-point operations minimizes the number of rounding steps, which
leads to more accurate results. An example of this optimization is a fused multiply-
accumulate (FMAC) instruction available in new processor architectures. The offline
compiler can provide fused floating-point mathematical capabilities for many
combinations of floating-point operators in your kernel.

4.3.1. Floating-Point versus Fixed-Point Representations

An FPGA contains a substantial amount of logic for implementing floating-point
operations. However, you can increase the amount of hardware resources available by
using a fixed-point representation of the data whenever possible. The hardware
necessary to implement a fixed-point operation is typically smaller than the equivalent
floating-point operation. As a result, you can fit more fixed-point operations into an
FPGA than the floating-point equivalent.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The OpenCL standard does not support fixed-point representation; you must
implement fixed-point representations using integer data types. Hardware developers
commonly achieve hardware savings by using fixed-point data representations and
only retain a data resolution required for performing calculations. You must use an 8,
16, 32, or 64-bit scalar data type because the OpenCL standard supports only these
data resolutions. However, you can incorporate the appropriate masking operations in
your source code so that the hardware compilation tools can perform optimizations to
conserve hardware resources.

For example, if an algorithm uses a fixed-point representation of 17-bit data, you
must use a 32-bit data type to store the value. If you then direct the Intel FPGA SDK
for OpenCL Offline Compiler to add two 17-bit fixed-point values together, the offline
compiler must create extra hardware to handle the addition of the excess upper 15
bits. To avoid having this additional hardware, you can use static bit masks to direct
the hardware compilation tools to disregard the unnecessary bits during hardware
compilation. The code below implements this masking operation:

__kernel fixed_point_add (__global const unsigned int * restrict a,
 __global const unsigned int * restrict b,
 __global unsigned int * restrict result)
{
 size_t gid = get_global_id(0);

 unsigned int temp;
 temp = 0x3_FFFF & ((0x1_FFFF & a[gid]) + ((0x1_FFFF & b[gid]));

 result[gid] = temp & 0x3_FFFF;
}

In this code example, the upper 15 bits of inputs a and b are masked away and added
together. Because the result of adding two 17-bit values cannot exceed an 18-bit
resolution, the offline compiler applies an additional mask to mask away the upper 14
bits of the result. The final hardware implementation is a 17-bit addition as opposed to
a full 32-bit addition. The logic savings in this example are relatively minor compared
to the sheer number of hardware resources available in the FPGA. However, these
small savings, if applied often, can accumulate into a larger hardware saving across
the entire FPGA.

4.4. Allocating Aligned Memory

When allocating host-side memories that are used to transfer data to and from the
FPGA,the memory must be at least 64-byte aligned.

Aligning the host-side memories allows direct memory access (DMA) transfers to occur
to and from the FPGA and improves buffer transfer efficiency.

Attention: Depending on how the host-side memory is used, Intel recommends to allocate more
strict alignment. For example, if the allocated memory is used to create a buffer using
the CL_MEM_USE_HOST_PTR flag, the memory should also be properly aligned to the
data types used to access the buffer in kernels. For more information about the
alignment requirements of host-side memory, refer to section C.3 of the OpenCL
Specification version 1.2.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set up aligned memory allocations, add the following source code to your host
program:

• For Windows:

#define AOCL_ALIGNMENT 64
#include <malloc.h>
void *ptr = _aligned_malloc (size, AOCL_ALIGNMENT);

To free up an aligned memory block, include the function call
_aligned_free(ptr);

• For Linux:

#define AOCL_ALIGNMENT 64
#include <stdlib.h>
void *ptr = NULL;
posix_memalign (&ptr, AOCL_ALIGNMENT, size);

To free up an aligned memory block, include the function call free(ptr);

Related Information

OpenCL Specification version 1.2

4.5. Aligning a Struct with or without Padding

A properly aligned struct helps the Intel FPGA SDK for OpenCL Offline Compiler
generate the most efficient hardware. A proper struct alignment means that the
alignment can be evenly divided by the struct size.

Important: Ensure a 4-byte alignment for the data structures. struct alignments smaller than
four bytes result in larger and slower hardware. Hardware efficiency increases with the
increasing alignment. In the following example, the Pixel_s structure is only one-
byte aligned but the Pixel structure is four-byte aligned due to the presence of a
four-byte not_used integer:

typedef struct {
 char r,g,b,alpha;
} Pixel_s;

typedef union {
 Pixel_s p;
 int not_used;
} Pixel;

You can also use the aligned attribute to force a 4-byte alignment, as shown in the
following example code:

typedef struct {
 char r,g,b,alpha;
} __attribute__((aligned(4))) Pixel;

The offline compiler conforms with the ISO C standard that requires the alignment of a
struct to satisfy all of the following criteria:

• The alignment must be an integer multiple of the lowest common multiple
between the alignments of all struct members.

• The alignment must be a power of two.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

103

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You may set the struct alignment by including the aligned(N) attribute in your
kernel code. Without an aligned attribute, the offline compiler determines the
alignment of each struct in an array of struct based on the size of the struct.
Consider the following example:

__kernel void test (struct mystruct* A,
 struct mystruct* B)
{
 A[get_global_id(0)] = B[get_global_id(0)];
}

If the size of mystruct is 101 bytes, each load or store access is 1-byte aligned. If
the size of mystruct is 128 bytes, each load or store access is 128-byte aligned,
which generates the most efficient hardware.

When the struct fields are not aligned within the struct, the offline compiler inserts
padding to align them. Inserting padding between struct fields affects hardware
efficiency in the following manner:

• Increases the size of the struct

• Might affect the alignment

To prevent the offline compiler from inserting padding, include the packed attribute in
your kernel code. The aforementioned ISO C standard applies when determining the
alignment of a packed or unpacked struct. Consider the following example:

struct mystruct1
{
 char a;
 int b;
};

The size of mystruct1 is 8 bytes. Therefore, the struct is 8-byte aligned, resulting
in efficient accesses in the kernel. Now consider another example:

struct mystruct2
{
 char a;
 int b;
 int c;
};

The size of mystruct2 is 12 bytes and the struct is 4-byte aligned. Because the
struct fields are padded and the struct is unaligned, accesses in the kernel are
inefficient.

Following is an example of a struct that includes the packed attribute:

struct __attribute__((packed)) mystruct3
{
 char a;
 int b;
 int c;
};

The size of mystruct3 is 16 bytes. Because mystruct3 is aligned and there is no
padding between struct fields, accesses in this kernel are more efficient than
accesses in mystruct3.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To include both the aligned(N) and packed attributes in a struct, consider the
following example:

struct __attribute__((packed)) __attribute__((aligned(16))) mystruct5
{
 char a;
 int b;
 int c;
};

The size of mystruct5 is 9 bytes. Because of the aligned(16) attribute, the
struct is stored at 16-byte aligned addresses in an array. Because mystruct5 is 16-
byte aligned and has no padding, accesses in this kernel is efficient.

For more information about struct alignment and the aligned(N) and packed
attributes, refer to the following documents:

• Section 6.11.1 of the OpenCL Specification version 1.2

• Disabling Insertion of Data Structure Padding section of the Intel FPGA SDK for
OpenCL Programming Guide

• Specifying the Alignment of a Struct section of the Intel FPGA SDK for OpenCL
Programming Guide

Related Information

• OpenCL Specification version 1.2

• Disabling Insertion of Data Structure Padding

• Specifying the Alignment of a Struct

4.6. Maintaining Similar Structures for Vector Type Elements

If you update one element of a vector type, update all elements of the vector.

The following code example illustrates a scenario where you should update a vector
element:

__kernel void update (__global const float4 * restrict in,
 __global const float4 * restrict out)
{
 size_t gid = get_global_id(0);

 out[gid].x = process(in[gid].x);
 out[gid].y = process(in[gid].y);
 out[gid].z = process(in[gid].z);
 out[gid].w = 0; //Update w even if that variable is not required.
}

4.7. Avoiding Pointer Aliasing

Insert the restrict keyword in pointer arguments whenever possible. Including the
restrict keyword in pointer arguments prevents the Intel FPGA SDK for OpenCL
Offline Compiler from creating unnecessary memory dependencies between non-
conflicting load and store operations.

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

105

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-insertion-of-data-structure.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/specifying-the-alignment-of-a-struct.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The restrict keyword informs the offline compiler that the pointer does not alias
other pointers. For example, if your kernel has two pointers to global memory, A and
B, that never overlap each other, declare the kernel in the following manner:

__kernel void myKernel (__global int * restrict A,
 __global int * restrict B)

Warning: Inserting the restrict keyword on a pointer that aliases other pointers might result
in incorrect results.

4.8. Avoid Expensive Functions

Some functions are expensive to implement in FPGAs. Expensive functions might
decrease kernel performance or require a large amount of hardware to implement.

The following functions are expensive:

• Integer division and modulo (remainder) operators

• Most floating-point operators except addition, multiplication, absolute value, and
comparison

Note: For more information about optimizing floating-point operations, refer to the
Optimize Floating-Point Operations section.

• Atomic functions

In contrast, inexpensive functions have minimal effects on kernel performance, and
their implementation consumes minimal hardware.

The following functions are inexpensive:

• Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR

• Logical operations with one constant argument

• Shift by constant

• Integer multiplication and division by a constant that is a power of two

If an expensive function produces a new piece of data for every work-item in a work-
group, it is beneficial to code it in a kernel. On the contrary, the code example below
shows a case of an expensive floating-point operation (division) executed by every
work-item in the NDRange:

__kernel void myKernel (__global const float * restrict a,
 __global float * restrict b,
 const float c, const float d)
{
 size_t gid = get_global_id(0);

 //inefficient since each work-item must calculate c divided by d
 b[gid] = a[gid] * (c / d);
}

The result of this calculation is always the same. To avoid this redundant and
hardware resource-intensive operation, perform the calculation in the host application
and then pass the result to the kernel as an argument for all work-items in the
NDRange to use. The modified code is shown below:

__kernel void myKernel (__global const float * restrict a,
 __global float * restrict b,
 const float c_divided_by_d)

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

{
 size_t gid = get_global_id(0);

 /*host calculates c divided by d once and passes it into
 kernel to avoid redundant expensive calculations*/
 b[gid] = a[gid] * c_divided_by_d;
}

The Intel FPGA SDK for OpenCL Offline Compiler consolidates operations that are not
work-item-dependent across the entire NDRange into a single operation. It then
shares the result across all work-items. In the first code example, the offline compiler
creates a single divider block shared by all work-items because division of c by d
remains constant across all work-items. This optimization helps minimize the amount
of redundant hardware. However, the implementation of an integer division requires a
significant amount of hardware resources. Therefore, it is beneficial to off-load the
division operation to the host processor and then pass the result as an argument to
the kernel to conserve hardware resources.

Related Information

Optimizing Floating-Point Operations on page 99

4.9. Avoiding Work-Item ID-Dependent Backward Branching

The Intel FPGA SDK for OpenCL Offline Compiler collapses conditional statements into
single bits that indicate when a particular functional unit becomes active. The offline
compiler completely eliminates simple control flows that do not involve looping
structures, resulting in a flat control structure and more efficient hardware usage. The
offline compiler compiles kernels that include forward branches, such as conditional
statements, efficiently.
Avoid including any work-item ID-dependent backward branching (that is, branching
that occurs in a loop) in your kernel because it degrades performance.

For example, the following code fragment illustrates branching that involves work-item
ID such as get_global_id or get_local_id:

for (size_t i = 0; i < get_global_id(0); i++)
{
 // statements
}

4. OpenCL Kernel Design Best Practices

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Profiling Your Kernel to Identify Performance
Bottlenecks

The Intel FPGA dynamic profiler for OpenCL uses performance counters to collect
kernel performance data during the design's execution. This data can be viewed using
the Intel VTune Profiler.

Tip: If you are looking for information about the Intel FPGA dynamic profiler for DPC++,
then refer to the Intel FPGA Dynamic Profiler for DPC++ section in the FPGA
Optimization Guide for Intel oneAPI Toolkits.

Consider the following OpenCL kernel program:

__kernel void add (__global int * a,
 __global int * b,
 __global int * c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid]+b[gid];
}

As shown in the figure below, the Profiler instruments and connects performance
counters in a daisy chain throughout the pipeline generated for the kernel program.
The host then reads the data collected by these counters. For example, in PCI
Express® (PCIe)-based systems, the host reads the data via the PCIe control register
access (CRA) or control and status register (CSR) port.

Figure 71. Intel FPGA Dynamic Profiler for OpenCL: Performance Counters
Instrumentation

+

Load Load

Store

+

Load Load

Store

CRA
To Host CRA

To Host

Work-item execution stalls might occur at various stages of an Intel FPGA SDK for
OpenCL pipeline. Applications with large amounts of memory accesses or load and
store operations might stall frequently to enable the completion of memory transfers.
The Profiler helps identify the load and store operations or channel accesses that
cause the majority of stalls within a kernel pipeline.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/analyze-your-design/analyze-the-fpga-image/intel-fpga-dynamic-profiler-for-dpc.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

5.1. Best Practices for Profiling Your Kernel

Intel recommends that you follow these best practices when profiling your OpenCL
kernel.

• Include the -profile Intel FPGA SDK for OpenCL Offline Compiler command
option in your aoc command during development to insert performance counters
into your kernel.

• Run the host application from a local folder to reduce profiler overhead. Avoid
running your host from a remote or NAS folder.

• Ensure that kernel runtime is longer than 20 ms. Otherwise, the overhead of
reading Profiler performance data to host takes over.

• Understand how all the load and store operations and channels are connected in
the data flow.

5.2. Instrumenting the Kernel Pipeline with Performance Counters
(-profile)

To instrument the OpenCL kernel pipeline with performance counters, include the
-profile=(all|autorun|enqueued) option of the aoc command when you
compile your kernel.

Note: Instrumenting the Verilog code with performance counters increases hardware
resource utilization (that is, increases FPGA area usage) and typically decreases
performance.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To instrument the Verilog code in the <your_kernel_filename>.aocx file with
performance counters, invoke the aoc -profile=(all|autorun|
enqueued) <your_kernel_filename>.cl command, where:

— all argument instruments all kernels in the <your_kernel_filename>.cl
file with performance counters. This is the default option if no argument is
provided.

— autorun argument instruments only the autorun kernels with performance
counters.

— enqueued argument instruments only the non-autorun kernels with
performance counters.

Note: — When profiling multiple, different kernels, do not use the same kernel
names across different .aocx files. If the kernel names are the same,
the profile data is wrong for these kernels.

— Regardless of the input to the clGetProfileDataDeviceIntelFPGA
host library call, the Intel FPGA dynamic profiler for OpenCL only profiles
kernel types that you indicate during compilation.

— Instrumenting the OpenCL kernel pipeline with performance counters on
all or enqueued kernels disables the use of hardware kernel invocation
queue by the OpenCL runtime environment. This may result in different
profile time.

Caution: Profiling autorun kernels results in some hardware overhead for the
counters. For large designs, the overhead can cause fMAX and design
frequency degradation. It can also lead to designs that cannot fit on the
chip if the Intel FPGA dynamic profiler for OpenCL profiles every kernel.

5.3. Obtaining Profiling Data During Runtime

You can obtain profiling data during runtime in one of the following ways:

• Use the Profiler Runtime Wrapper from the command line to obtain the data. This
data can later be imported into Intel VTune Profiler. For more information, refer to
Invoking the Profiler Runtime Wrapper on page 110.

• Run your host application in Intel VTune Profiler using the CPU/FPGA Interaction
view. For more information about how to configure and run your host application,
refer to CPU/FPGA Interaction Analysis and Viewing Profiling Data Using Intel
VTune™ Profiler on page 111.

5.3.1. Invoking the Profiler Runtime Wrapper

To profile your FPGA design using the Profiler Runtime Wrapper, first ensure that you
have included the -profile option in your aoc command when you compiled your
kernels.

The Profiler Runtime Wrapper ensures that data is collected from the performance
counters, which are in the compiled design, during the host execution. Data is saved
in a profile.mon monitor description file, which the Profiler Runtime Wrapper then
post processes and converts into a readable profile.json file. While both the
profile.mon and profile.json files are available after host execution completes,
you are encouraged to use the profile.json file for further data processing.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

110

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/accelerators-group/cpu-fpga-interaction-analysis.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To invoke the Profiler Runtime Wrapper, execute the following command:

aocl profile [options] /path/to/host-executable [executable options]

where

• [options] are any additional flags you want to pass to the wrapper. Use the
aocl profile –help command to view a list of options and their uses.

• /path/to/host-executable is the path to the host executable.

• [executable options] are options or arguments that must be passed to the
host executable.

Note: If you are executing from a different directory than your compilation directory, the
wrapper also needs the compiled binary (.aocx) file, which you can pass using the
option -x <path/to/.aocx>.

Caution: Because of slow network disk accesses, running the host application from a networked
directory might introduce delays between kernel executions. These delays might
increase the overall execution time of the host application. In addition, they might
introduce delays during kernel executions while the runtime stores profile output data
to disk.

5.3.1.1. Splitting Execution and Data Post Processing

By default, the Profiler Runtime Wrapper automatically runs a post-processing step on
your profile.mon monitor file to produce a readable profile.json file. In some
situations, the post-processing step may take longer time than expected. Because of
this, you can choose to separate the execution and data post-processing step into two
separate manual steps. To do this, use the --no-json and --no-run <path to
profile.mon file> Profiler Runtime Wrapper options.

• The --no-json flag only runs your host application and produces a
profile.mon monitor file, without post-processing.

• The --no-run <path to profile.mon file> flag does not invoke your host
application, instead, just calls the post-processing step on the supplied
profile.mon file.

Caution: The Profiler Runtime Wrapper’s --no-run flow is not backwards
compatible for profile.mon files created using a runtime version
earlier than Intel FPGA SDK for OpenCL version 20.3.

5.3.2. Viewing Profiling Data Using Intel VTune™ Profiler

Intel VTune Profiler is a performance analysis tool for developing serial and
multithreaded applications. It helps you analyze the algorithm choices and identify
where and how your application can benefit from available hardware resources.

To view performance data, upload your profile.json file to the CPU/FPGA
Interaction view in the Intel VTune Profiler. For more information about how to
upload the file and open the correct views, refer to CPU/FPGA Interaction Analysis
(Preview) in the Intel VTune Profiler User Guide.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

111

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/accelerators-group/cpu-fpga-interaction-analysis.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/accelerators-group/cpu-fpga-interaction-analysis.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the CPU/FPGA Interaction view in the Intel VTune Profiler to determine the
following performance information about your design in various graphical
representations:

Table 17. Types of Information in CPU/FPGA Interaction view

Tab Information

Summary Contains a summarized or average data about your kernels' execution.

Bottom-up Contains a graphical timeline view and an expandable summary of each kernel’s
execution including host and device-side events.
Double-click on a kernel to view its source in the Source tab.

Platform Contains information about the memory transfers and CPU-side information.

Source Contains detailed statistics about memory and pipe accesses in source view
format. For more information, refer to Performance Data Types on page 114.

5.4. Reducing Area Resource Use While Profiling

Due to various performance counters being added to the pipeline, introducing profiling
into your design can result in a large amount of area resource use. This may be
inconvenient for particularly large designs as adding profiling performance counters
might result in no fit errors.

To reduce the amount of area resources that profiling takes up, you can choose to
profile with shared performance counters. This profiling mode allows counters to be
shared by various signals over multiple design runs to reduce the number of
performance counters added to the design. During runtime, the Profiler Runtime
Wrapper runs the host application four times, where, for each run, the counters count
a different signal.

Note: You must invoke the Profiler Runtime Wrapper only once.

To turn on the shared performance counters profiling mode, perform these steps:

1. Include the -profile-shared-counters flag along with the -profile flag
during your aoc compile.

2. Include the -sc flag when running your design with the Profiler Runtime Wrapper.

Without the -sc flag, your design runs only once so, you lack data for everything
after the first shared signal.

Caution: The shared performance counters profiling mode works well only for
kernels and designs that are deterministic. Because the host application
and design are run multiple times to collect all of the data, non-
deterministic designs result in shared data that is difficult to combine,
and it may be difficult to determine where design problems occur
temporally.

5.5. Temporal Performance Collection

During the run of your host application, the Profiler collects performance counter data
at a given sample rate n. After n cycles, the Profiler collects performance counter data
and outputs to the profile.mon monitor file.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You can control the rate at which the Profiler counters are sampled by setting the
Profiler Runtime Wrapper’s -period flag. The specified period is the minimum
number of kernel pipeline clock cycles between profiling samples. If you do not set
a period, the default behavior is to profile as often as possible.

Note: For particularly large or long running designs, the amount of data generated
by the default temporal period might result in a very large profile.mon
and profile.json file. To reduce this file size, either increase the
sampling period or turn off temporal profiling.

• To turn off temporal profiling and instead collect performance data only after a
kernel has finished executing, you can set the Profiler Runtime Wrapper’s -no-
temporal flag.

• The Profiler does not automatically collect the profiling information for autorun
kernels if you disable temporal profiling, since autorun kernels never finish. You
can use the host API call clGetProfileDataDeviceIntelFPGA to obtain
profiling data from autorun kernels. For more information about triggering
profiling using your host application, refer to Collecting Profile Data During Kernel
Execution in the Intel FPGA SDK for OpenCL Pro Edition: Programming Guide.

Note: If you collect the performance data only at the end of execution, the data is
an average representation of the kernel’s overall execution.

5.5.1. Profiling Autorun Kernels

Autorun kernel profiling feature allows you to profile autorun kernels.

Kernels that are marked with the autorun attribute are referred to as autorun
kernels. An autorun kernel starts executing without being created and launched by the
host, so it runs before the kernels that are explicitly enqueued, and restarts
automatically on completion. For more information about the autorun attribute, refer
to Omit Communication Hardware between the Host and the Kernel topic.

Attention: Autorun kernel profiling feature does not allow profiling individual kernels. The data
for all autorun kernels in the design are read in a single attempt.

When temporal profiling is enabled, all autorun kernels in the design are profiled at
the specified temporal period.

When temporal profiling is disabled, by default, the Profiler does not provide any
profiling information since autorun kernels never finish. You can inform the Profiler
when to profile by calling the host library function
clGetProfileDataDeviceIntelFPGA to capture the autorun profiler data. This call
can be made at any point during execution. For more about profiling using host API
calls, refer to Profiling Enqueued and Autorun Kernels.

Note: The host API call works whether temporal is enabled or not, but it is required to get
autorun profiling data when temporal is disabled.

Related Information

• Omit Communication Hardware between the Host and the Kernel

• Profiling Enqueued and Autorun Kernels

• Profile Data Acquisition

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

113

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/triggering-collection-profiling-data.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/triggering-collection-profiling-data.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/profiling-autorun-kernels.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/omit-communication-hardware-between.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/profiling-autorun-kernels.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/profile-data-acquisition.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Multiple Autorun Profiling Calls

5.6. Performance Data Types

The Intel FPGA dynamic profiler for OpenCL provides various types of performance
data and information that you can view using the Intel VTune Profiler .

The following tables describe these information types:

Table 18. Types of Performance Data

Column Description Access Type

Attributes Memory or channel attributes information such as memory type
(local or global), corresponding memory system (DDR or quad
data rate (QDR)), and read or write access.

All memory and channel
accesses

Stall% Percentage of time the memory or channel access is causing
pipeline stalls. It is a measure of the ability of the memory or
channel access to fulfill an access request.

All memory and channel
accesses

Occupancy% Percentage of the overall profiled time frame when a valid
work-item executes the memory or channel instruction.

All memory and channel
accesses

Bandwidth Average memory bandwidth that the memory access uses and
its overall efficiency.
For each global memory access, FPGA resources are assigned
to acquire data from the global memory system. However, the
amount of data a kernel program uses might be less than the
acquired data. The overall efficiency is the percentage of total
bytes, acquired from the global memory system, that the
kernel program uses.

Global memory accesses

Channel Depth(1) Occupancy of the channel FIFO (in bytes) when the channel is
not idling. This is measured in the following ways:
• Average Channel Depth measures the average occupancy of

the channel in the measured sample time-slice.
• Maximum Channel Depth measures the fill level of the

channel, indicating the maximum occupancy of the channel
in the sample time-slice.

All channel accesses

Idle(1) Percentage of the overall profiled time frame when there are no
valid work item executing or stalling the memory or channel
instruction.

All memory and channel
accesses

Note: If your kernel undergoes memory optimization that consolidates hardware resources
and implements multiple memory operations, statistical data might not be available
for each memory operation. One set of statistical data maps to the point of
consolidation in hardware.

5.7. Interpreting the Profiling Information

Profiling information helps you identify poor memory or channel behaviors that lead to
unsatisfactory kernel performance.

The following sections explain the Intel FPGA dynamic profiler for OpenCL metrics that
are displayed in various tabs of the CPU/FPGA Interaction view in the Intel VTune
Profiler.

(1) Intel VTune Profiler will show this information in a future release.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

114

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/multiple-autorun-profiling-calls.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: Profiling information that relates to the Intel FPGA SDK for OpenCL channels also
applies to OpenCL pipes.

Stall, Occupancy, Bandwidth on page 115

Stalling Channels on page 116

Channel Depths on page 117

5.7.1. Stall, Occupancy, Bandwidth

For specific lines of kernel code, the Source View tab of the Intel VTune Profiler GUI
shows stall percentage, occupancy percentage, data transfer size, and average
memory bandwidth.

For definitions of stall, occupancy, and bandwidth, refer to Types of Performance Data.

The Intel FPGA SDK for OpenCL generates a pipeline architecture where work-items
traverse through the pipeline stages sequentially (that is, in a pipeline-parallel
manner). As soon as a pipeline stage becomes empty, a work-item enters and
occupies the stage. Pipeline parallelism also applies to iterations of pipelined loops,
where iterations enter a pipelined loop sequentially.

Figure 72. Simplified Representation of a Kernel Pipeline Instrumented with
Performance Counters

Load-Store Unit

Upstream
kernel pipeline

Downstream
kernel pipeline

ctr ctr

ctrtotal_count

ivalid_count

ostall_count

1

ivalid ostall

ovalid istall data

Upstream kernel pipeline
will set ivalid=0 if ostall=1

Global memory
interconnect

32

data512

req

waitreq

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following are simplified equations that describe the Profiler calculates stall,
occupancy, and bandwidth:

Stall =
ostall_count
total_count

x 100%

ivalid_count
total_count x 100%Occupancy =

Bandwidth =
data_width x ivalid_count

kernel_time

Note: ivalid_count in the bandwidth equation also includes the predicate=true input
to the load-store unit.

Ideal kernel pipeline conditions:

• Stall percentage equals 0%

• Occupancy percentage equals 100%

• Bandwidth equals the board's bandwidth

For a given location in the kernel pipeline if the sum of the stall percentage and the
occupancy percentage approximately equals 100%, the Profiler identifies the location
as the stall source. If the stall percentage is low, the Profiler identifies the location as
the victim of the stall.

The Profiler reports a high occupancy percentage if the offline compiler generates a
highly efficient pipeline from your kernel, where work-items or iterations are moving
through the pipeline stages without stalling.

If all LSUs are accessed the same number of times, they have the same occupancy
value.

• If work-items cannot enter the pipeline consecutively, they insert bubbles into the
pipeline.

• In loop pipelining, loop-carried dependencies also form bubbles in the pipeline
because of bubbles that exist between iterations.

• If an LSU is accessed less frequently than other LSUs, such as the case when an
LSU is outside a loop that contains other LSUs, this LSU has a lower occupancy
value than the other LSUs.

The same rule regarding occupancy value applies to channels.

5.7.2. Stalling Channels

Channels provide a point-to-point communication link between either two kernels, or
between a kernel and an I/O channel. If an I/O channel stalls, it implies that the I/O
channel cannot keep up with the kernel.

For example, if a kernel has a read channel call to an Ethernet I/O and the Profiler
identifies a stall, it implies that the write channel is not writing data to the Ethernet
I/O at the same rate as the read rate of the kernel.

For kernel-to-kernel channels, stalls occur if there is an imbalance between the read
and write sides of the channel, or if the read and write kernels are not running
concurrently.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if the kernel that reads is not launched concurrently with the kernel that
writes, or if the read operations occur much slower than the write operations, the
Profiler identifies a stall for the write_channel_intel call in the write kernel.

Related Information

Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes on page
92

5.7.3. Channel Depths

As mentioned in Stalling Channels on page 116, channels provide a communication
link either between two kernels or between a kernel and an I/O channel. The channel
depth counters complement the stall counts in explaining the issues that are causing
the channel to stall.

• If a channel is continuously nearly empty, the read side of the channel is likely
working faster than the write side, so the write side must be sped up. The channel
depth can probably be reduced.

• If the channel is full, the write side is likely faster. The channel depth may need to
be increased.

• In more complicated patterns, for example, if the average depth of the channel is
far lower than the maximum depth, the write side might be writing a lot of a data
in a single attempt and overwhelming the read side but writing slowly the rest of
the time. A repetition of this pattern can create bubbles in the pipeline without
creating a long stall, so it can be useful to track down using the channel depth
counters.

Note: The depth of the channel cannot be directly controlled since the compiler optimizes the
channel for better use of area resources and always rounded up based on the
requested channel size. So, the final channel depth is approximately 32 bytes, 512
bytes, or a multiple of 1024 bytes.

5.8. Profiler Analyses of Example OpenCL Design Scenarios

Understanding the problems and solutions presented in example OpenCL design
scenarios might help you use the Profiler metrics of your design to optimize its
performance.

5.8.1. High Stall Percentage

A high stall percentage implies that the memory or channel instruction is unable to
fulfill the access request because of contention for memory bandwidth or channel
buffer space.

Memory instructions stall often whenever bandwidth usage is inefficient or if a large
amount of data transfer is necessary during the execution of your application.
Inefficient memory accesses lead to suboptimal bandwidth utilization. In such cases,
analyze your kernel memory accesses for possible improvements.

Channel instructions stall whenever there is a strong imbalance between read and
write accesses to the channel. Imbalances might be caused by channel reads or writes
operating at different rates.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you find that the stall percentage of a write channel call is high, check
to see if the occupancy and activity of the read channel call are low. If they are, the
performing speed of the kernel controlling the read channel call is too slow for the
kernel controlling the write channel call, leading to a performance bottleneck.

Related Information

Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes on page
92

5.8.2. Low Occupancy Percentage

A low occupancy percentage implies that a work-item is accessing the load and store
operations or the channel infrequently. This behavior is expected for load and store
operations or channels that are in non-critical loops. However, if the memory or
channel instruction is in critical portions of the kernel code and the occupancy or
activity percentage is low, it implies that a performance bottleneck exists because
work-items or loop iterations are not being issued in the hardware.

Consider the following code example:

__kernel void proc (__global int * a, ...) {
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < 1000; j++) {
 write_channel_intel (c0, data0);
 }
 for (int k = 0; k < 3; k++) {
 write_channel_intel (c1, data1);
 }
 }
}

Assuming all the loops are pipelined, the first inner loop with a trip count of 1000 is
the critical loop. The second inner loop with a trip count of three is executed
infrequently. As a result, you can expect that the occupancy and activity percentages
for channel c0 are high and for channel c1 are low.

Also, occupancy percentage might be low if you define a small work-group size, the
kernel might not receive sufficient work-items. This is problematic because the
pipeline is empty generally for the duration of kernel execution, which leads to poor
performance.

5.8.3. High Stall and High Occupancy Percentages

A load and store operation or channel with a high stall percentage is the cause of the
kernel pipeline stall.

Remember: An ideal kernel pipeline condition has a stall percentage of 0% and an occupancy
percentage of 100%.

Usually, the sum of the stall and occupancy percentages approximately equals 100%.
If a load and store operation or channel has a high stall percentage, it means that the
load and store operation or channel has the ability to execute every cycle but is
generating stalls.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Solutions for stalling global load and store operations:

• Use local memory to cache data.

• Reduce the number of times you read the data.

• Improve global memory accesses.

— Change the access pattern for more global-memory-friendly addressing (for
example, change from stride accessing to sequential accessing).

— Compile your kernel with the -no-interleaving=default Intel FPGA SDK
for OpenCL Offline Compiler command option, and separate the read and write
buffers into different DDR banks.

— Have fewer but wider global memory accesses.

• Acquire an accelerator board that has more bandwidth (for example, a board with
three DDRs instead of 2 DDRs).

Solution for stalling local load and store operations:

• Review the HTML area report to verify the local memory configuration and modify
the configuration to make it stall-free.

Solutions for stalling channels:

• Fix stalls on the other side of the channel. For example, if channel read stalls, it
means that the writer to the channel is not writing data into the channel fast
enough and needs to be adjusted.

• If there are channel loops in your design, specify the channel depth.

5.8.4. No Stalls, Low Occupancy Percentage, and Low Bandwidth

Loop-carried dependencies might create a bottleneck in your design that causes a low
occupancy percentage and a low bandwidth.

Remember: An ideal kernel pipeline condition has a stall percentage of 0%, an occupancy
percentage of 100%, and a bandwidth that equals the board's available bandwidth.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 73. Example OpenCL Kernel and Profiler Analysis

In this example, dst[] is executed once every 20 iterations of the FACTOR2 loop and
once every four iterations of the FACTOR1 loop. Therefore, FACTOR2 loop is the source
of the bottleneck.

Solutions for resolving loop bottlenecks:

• Unroll the FACTOR1 and FACTOR2 loops evenly. Simply unrolling FACTOR2 loop
further does not resolve the bottleneck.

• Vectorize your kernel to allow multiple work-items to execute during each loop
iteration.

Related Information

Kernel Vectorization on page 139

5.8.5. No Stalls, High Occupancy Percentage, and Low Bandwidth

The structure of a kernel design might prevent it from leveraging all the available
bandwidth that the accelerator board can offer.

Remember: An ideal kernel pipeline condition has a stall percentage of 0%, an occupancy
percentage of 100%, and a bandwidth that equals the board's available bandwidth.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 74. Example OpenCL Kernel and Profiler Analysis

In this example, the accelerator board can provide a bandwidth of 25600 megabytes
per second (MB/s). However, the vector_add kernel is requesting (2 reads + 1 write)
x 4 bytes x 294 MHz = 12 bytes/cycle x 294 MHz = 3528 GB/s, which is 14% of the
available bandwidth. To increase the bandwidth, increase the number of tasks
performed in each clock cycle.

Solutions for low bandwidth:

• Automatically or manually vectorize the kernel to make wider requests

• Unroll the innermost loop to make more requests per clock cycle

• Delegate some of the tasks to another kernel

5.8.6. High Stall and Low Occupancy Percentages

There might be situations where a global store operation might have a high stall
percentage (for example, 30%) and a very low occupancy percentage (for example,
0.01%). If such a store operation happens once every 10000 cycles of computation,
the efficiency of this store is not a cause for concern.

5.9. Intel FPGA Dynamic Profiler for OpenCL Limitations

The Intel FPGA dynamic profiler for OpenCL has some limitations.

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Profile data is not persistent across OpenCL programs or multiple devices.

You can request profile data from a single OpenCL program and on a single device
only. If your host swaps a new kernel program in and out of the FPGA, the Profiler
does not save the profile data.

• All profiling data is read to the host during execution and is only stored on the
device long enough to be read on the next readback. Any reprogram of new
designs or restarting the same design results in new profiling data, erasing any
previous data that may have existed.

• Instrumenting the Verilog code with performance counters increases hardware
resource utilization (that is, FPGA area usage) and typically decreases
performance.

For information on instrumenting the Verilog code with performance counters,
refer to the Instrumenting the Kernel Pipeline with Performance Counters section
of the Intel FPGA SDK for OpenCL Programming Guide.

Related Information

• Collecting Profile Data During Kernel Execution

• Instrumenting the Kernel Pipeline with Performance Counters (-profile) on page
109

5. Profiling Your Kernel to Identify Performance Bottlenecks

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

122

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/triggering-collection-profiling-data.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Strategies for Improving Single Work-Item Kernel
Performance

Addressing Single Work-Item Kernel Dependencies Based on Optimization Report
Feedback on page 123

Good Design Practices for Single Work-Item Kernel on page 134

6.1. Addressing Single Work-Item Kernel Dependencies Based on
Optimization Report Feedback

In many cases, designing your OpenCL application as a single work-item kernel is
sufficient to maximize performance without performing additional optimization steps.
To further improve the performance of your single work-item kernel, you can optimize
it by addressing dependencies that the optimization report identifies.

Tip: If you are looking for Intel oneAPI DPC++/C++ Compiler-specific details, refer to
Single Work-item Kernels section in the FPGA Optimization Guide for Intel oneAPI
Toolkits.

The following flowchart outlines the approach you can take to iterate on your design
and optimize your single work-item kernel. For usage information on the Intel FPGA
SDK for OpenCL Emulator and the Profiler, refer to the Emulating and Debugging Your
OpenCL Kernel and Profiling Your OpenCL Kernel sections of the Intel FPGA SDK for
OpenCL Programming Guide, respectively. For information on the Intel FPGA dynamic
profiler for OpenCL GUI and profiling information, refer to the Profile Your Kernel to
Identify Performance Bottlenecks section.

Intel recommends the following optimization options to address single work-item
kernel loop-carried dependencies, in order of applicability: removal, relaxation,
simplification, and transfer to local memory.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 75. Optimization Work Flow of a Single Work-Item Kernel

Develop kernel as single work-item

Generate optimization report to identify
pipeline stalls

aoc -c myKernel.cl

Minimize pipeline stalls by:
1. Removing dependency
2. Relaxing dependency
3. Simplifying dependency
4. Accepting modifications

Pipeline stalls
identified?

Generate the .aocx file

aoc [-v] myKernel.cl -report

Measure kernel performance
(e.g. modify host code to track time before

and after clEnqueueTask() API call)

Performance
target met?

Optimization
completes

YES NO

YES

myKernel.aocx

Emulate kernel
aoc -march=emulator myKernel.cl

Profile kernel
aoc -profile myKernel.cl

aocl report myKernel.aocx profile.mon [myKernel.source]

Restructure
design

NO

Emulation
successful?

Loop Analysis in the
HTML report

myKernel.aoco

NO

YES

Estimated Resource Usage
 Summary in the HTML report

Resource usage
acceptable?

Use available resources to:
1. Execute certain pipleine
sections in parallel
2. Unroll loops

NOYES Free on-chip
resources available?

NO

Restructure
design

YES

Review HTML report
<your_kernel_filename>/reports/report.html

1. Removing Loop-Carried Dependency on page 124

2. Relaxing Loop-Carried Dependency on page 127

3. Transferring Loop-Carried Dependency to Local Memory on page 129

4. Relaxing Loop-Carried Dependency by Inferring Shift Registers on page 130

5. Removing Loop-Carried Dependencies Caused by Accesses to Memory Arrays on
page 132

Related Information

• Emulating and Debugging Your OpenCL Kernel

• Profiling Your Kernel to Identify Performance Bottlenecks on page 108

6.1.1. Removing Loop-Carried Dependency

Based on the feedback from the optimization report, you can remove a loop-carried
dependency by implementing a simpler memory access pattern.

Consider the following kernel:

 1 #define N 128
 2
 3 __kernel void unoptimized (__global int * restrict A,

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

124

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/emulating-and-debugging-your-opencl-kernel.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 4 __global int * restrict B,
 5 __global int* restrict result)
 6 {
 7 int sum = 0;
 8
 9 for (unsigned i = 0; i < N; i++) {
10 for (unsigned j = 0; j < N; j++) {
11 sum += A[i*N+j];
12 }
13 sum += B[i];
14 }
15
16 * result = sum;
17 }

The optimization report for kernel unoptimized resembles the following:

• The first row of the report indicates that the Intel FPGA SDK for OpenCL Offline
Compiler successfully infers pipelined execution for the outer loop, and a new loop
iteration launches every other cycle.

• The message due to Pipeline structure indicates that the offline compiler
creates a pipeline structure that causes an outer loop iteration to launch every two
cycles. The behavior is not a result of how you structure your kernel code.

Note: For recommendations on how to structure your single work-item kernel,
refer to the Good Design Practices for Single Work-Item Kernel section.

• The remaining messages in the first row of report indicate that the loop executes a
single iteration at a time across the subloop because of data dependency on the
variable sum. This data dependency exists because each outer loop iteration
requires the value of sum from the previous iteration to return before the inner
loop can start executing.

• The second row of the report notifies you that the inner loop executes in a
pipelined fashion with no performance-limiting loop-carried dependencies.

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To optimize the performance of this kernel, remove the data dependency on variable
sum so that the outer loop iterations do not execute serially across the subloop.
Perform the following tasks to decouple the computations involving sum in the two
loops:

1. Define a local variable (for example, sum2) for use in the inner loop only.

2. Use the local variable from Step 1 to store the cumulative values of A[i*N + j]
as the inner loop iterates.

3. In the outer loop, store the variable sum to store the cumulative values of B[i]
and the value stored in the local variable.

Below is the restructured kernel optimized:

 1 #define N 128
 2
 3 __kernel void optimized (__global int * restrict A,
 4 __global int * restrict B,
 5 __global int * restrict result)
 6 {
 7 int sum = 0;
 8
 9 for (unsigned i = 0; i < N; i++) {
10 // Step 1: Definition
11 int sum2 = 0;
12
13 // Step 2: Accumulation of array A values for one outer loop iteration
14 for (unsigned j = 0; j < N; j++) {
15 sum2 += A[i*N+j];
16 }
17
18 // Step 3: Addition of array B value for an outer loop iteration
19 sum += sum2;
20 sum += B[i];
21 }
22
23 * result = sum;
24 }

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

An optimization report similar to the one below indicates the successful removal of the
loop-carried dependency on the variable sum:

You have addressed all the loop-carried dependence issues successfully when you see
only the following messages in the optimization report:

• Pipelined execution inferred for innermost loops.

• Pipelined execution inferred. Successive iterations launched
every 2 cycles due to: Pipeline structure for all other loops.

Related Information

Good Design Practices for Single Work-Item Kernel on page 134

6.1.2. Relaxing Loop-Carried Dependency

Based on the feedback from the optimization report, you can relax a loop-carried
dependency by increasing the dependence distance.Increase the dependence distance
by increasing the number of loop iterations that occurs between the generation of a
loop-carried value and its usage.

Consider the following code example:

 1 #define N 128
 2
 3 __kernel void unoptimized (__global float * restrict A,
 4 __global float * restrict result)
 5 {
 6 float mul = 1.0f;
 7
 8 for (unsigned i = 0; i < N; i++)
 9 mul *= A[i];
10
11 * result = mul;
12 }

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The optimization report above shows that the Intel FPGA SDK for OpenCL Offline
Compiler infers pipelined execution for the loop successfully. However, the loop-carried
dependency on the variable mul causes loop iterations to launch every six cycles. In
this case, the floating-point multiplication operation on line 9 (that is, mul *= A[i])
contributes the largest delay to the computation of the variable mul.

To relax the loop-carried data dependency, instead of using a single variable to store
the multiplication results, operate on M copies of the variable and use one copy every
M iterations:

1. Declare multiple copies of the variable mul (for example, in an array called
mul_copies).

2. Initialize all the copies of mul_copies.

3. Use the last copy in the array in the multiplication operation.

4. Perform a shift operation to pass the last value of the array back to the beginning
of the shift register.

5. Reduce all the copies to mul and write the final value to result.

Below is the restructured kernel:

 1 #define N 128
 2 #define M 8
 3
 4 __kernel void optimized (__global float * restrict A,
 5 __global float * restrict result)
 6 {
 7 float mul = 1.0f;
 8
 9 // Step 1: Declare multiple copies of variable mul
10 float mul_copies[M];
11
12 // Step 2: Initialize all copies
13 for (unsigned i = 0; i < M; i++)
14 mul_copies[i] = 1.0f;
15
16 for (unsigned i = 0; i < N; i++) {
17 // Step 3: Perform multiplication on the last copy
18 float cur = mul_copies[M-1] * A[i];
19
20 // Step 4a: Shift copies
21 #pragma unroll
22 for (unsigned j = M-1; j > 0; j--)
23 mul_copies[j] = mul_copies[j-1];
24

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25 // Step 4b: Insert updated copy at the beginning
26 mul_copies[0] = cur;
27 }
28
29 // Step 5: Perform reduction on copies
30 #pragma unroll
31 for (unsigned i = 0; i < M; i++)
32 mul *= mul_copies[i];
33
34 * result = mul;
35 }

An optimization report similar to the one below indicates the successful relaxation of
the loop-carried dependency on the variable mul:

6.1.3. Transferring Loop-Carried Dependency to Local Memory

For a loop-carried dependency that you cannot remove, improve the II by moving the
array with the loop-carried dependency from global memory to local memory.

Consider the following kernel example:

1 #define N 128
2
3 __kernel void unoptimized(__global int* restrict A)
4 {
5 for (unsigned i = 0; i < N; i++)
6 A[N-i] = A[i];
7 }

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Global memory accesses have long latencies. In this example, the loop-carried
dependency on the array A[i] causes the long latency. This latency is reflected by an
II of 227 in the optimization report. To reduce the II value by transferring the loop-
carried dependency from global memory to local memory, perform the following tasks:

1. Copy the array with the loop-carried dependency to local memory. In this
example, array A[i] becomes array B[i] in local memory.

2. Execute the loop with the loop-carried dependence on array B[i].

3. Copy the array back to global memory.

When you transfer array A[i] to local memory and it becomes array B[i], the loop-
carried dependency is now on B[i]. Because local memory has a much lower latency
than global memory, the II value improves.

Below is the restructured kernel optimized:

 1 #define N 128
 2
 3 __kernel void optimized(__global int* restrict A)
 4 {
 5 int B[N];
 6
 7 for (unsigned i = 0; i < N; i++)
 8 B[i] = A[i];
 9
10 for (unsigned i = 0; i < N; i++)
11 B[N-i] = B[i];
12
13 for (unsigned i = 0; i < N; i++)
14 A[i] = B[i];
15 }

An optimization report similar to the one below indicates the successful reduction of II
from 227 to 2:

6.1.4. Relaxing Loop-Carried Dependency by Inferring Shift Registers

To enable the Intel FPGA SDK for OpenCL Offline Compiler to handle single work-item
kernels that carry out double precision floating-point operations efficiently, remove
loop-carried dependencies by inferring a shift register.

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following kernel:

 1 __kernel void double_add_1 (__global double *arr,
 2 int N,
 3 __global double *result)
 4 {
 5 double temp_sum = 0;
 6
 7 for (int i = 0; i < N; ++i)
 8 {
 9 temp_sum += arr[i];
10 }
11
12 *result = temp_sum;
13 }

The optimization report for kernel unoptimized resembles the following:

The kernel unoptimized is an accumulator that sums the elements of a double
precision floating-point array arr[i]. For each loop iteration, the offline compiler
takes 11 cycles to compute the result of the addition and then stores it in the variable
temp_sum. Each loop iteration requires the value of temp_sum from the previous loop
iteration, which creates a data dependency on temp_sum.

• To relax the data dependency, infer the array arr[i] as a shift register.

Below is the restructured kernel optimized:

 1 //Shift register size must be statically determinable
 2 #define II_CYCLES 12
 3
 4 __kernel void double_add_2 (__global double *arr,
 5 int N,
 6 __global double *result)
 7 {
 8 //Create shift register with II_CYCLE+1 elements
 9 double shift_reg[II_CYCLES+1];
10
11 //Initialize all elements of the register to 0
12 for (int i = 0; i < II_CYCLES + 1; i++)
13 {
14 shift_reg[i] = 0;
15 }
16
17 //Iterate through every element of input array
18 for(int i = 0; i < N; ++i)
19 {
20 //Load ith element into end of shift register
21 //if N > II_CYCLE, add to shift_reg[0] to preserve values

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

22 shift_reg[II_CYCLES] = shift_reg[0] + arr[i];
23
24 #pragma unroll
25 //Shift every element of shift register
26 for(int j = 0; j < II_CYCLES; ++j)
27 {
28 shift_reg[j] = shift_reg[j + 1];
29 }
30 }
31
32 //Sum every element of shift register
33 double temp_sum = 0;
34
35 #pragma unroll
36 for(int i = 0; i < II_CYCLES; ++i)
37 {
38 temp_sum += shift_reg[i];
39 }
40
41 *result = temp_sum;
42 }

The following optimization report indicates that the inference of the shift register
shift_reg[II_CYCLES] successfully removes the data dependency on the variable
temp_sum:

6.1.5. Removing Loop-Carried Dependencies Caused by Accesses to
Memory Arrays

Include the ivdep pragma in your single work-item kernel to assert that accesses to
memory arrays do not cause loop-carried dependencies.

During compilation, the Intel FPGA SDK for OpenCL Offline Compiler creates hardware
that ensures load and store instructions operate within dependency constraints. An
example of a dependency constraint is that dependent load and store instructions
must execute in order. The presence of the ivdep pragma instructs the offline
compiler to remove this extra hardware between load and store instructions in the
loop that immediately follows the pragma declaration in the kernel code. Removing
the extra hardware might reduce logic utilization and lower the II value in single work-
item kernels.

You can provide more information about loop dependencies by adding the
safelen(N) clause to the ivdep pragma. The safelen(N) clause specifies the
maximum number of consecutive loop iterations without loop-carried dependencies.

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, #pragma ivdep safelen(32) indicates to the compiler that there are
a maximum of 32 iterations of the loop before loop-carried dependencies might be
introduced. That is, while #pragma ivdep promises that there are no implicit
memory dependency between any iteration of this loop, #pragma safelen(32)
promises that the iteration that is 32 iterations away is the closest iteration that could
be dependent on this iteration.

• If all accesses to memory arrays that are inside a loop do not cause loop-carried
dependencies, add the line #pragma ivdep before the loop in your kernel code.

Example kernel code:

// no loop-carried dependencies for A and B array accesses
#pragma ivdep
for (int i = 0; i < N; i++) {
 A[i] = A[i - X[i]];
 B[i] = B[i - Y[i]];
}

• To specify that accesses to a particular memory array inside a loop does not cause
loop-carried dependencies, add the line #pragma ivdep array (array_name)
before the loop in your kernel code.

The array specified by the ivdep pragma must be a local or private memory
array, or a pointer variable that points to a global, local, or private memory
storage. If the specified array is a pointer, the ivdep pragma also applies to all
arrays that may alias with specified pointer.

The array specified by the ivdep pragma can also be an array or a pointer
member of a struct.

Example kernel code:

// No loop-carried dependencies for A array accesses
// The offline compiler will insert hardware that reinforces dependency
constraints for B
#pragma ivdep array(A)
for (int i = 0; i < N; i++) {
 A[i] = A[i - X[i]];
 B[i] = B[i - Y[i]];
}

// No loop-carried dependencies for array A inside struct
#pragma ivdep array(S.A)
for (int i = 0; i < N; i++) {
 S.A[i] = S.A[i - X[i]];
}

// No loop-carried dependencies for array A inside the struct pointed by S
#pragma ivdep array(S->X[2][3].A)
for (int i = 0; i < N; i++) {
 S->X[2][3].A[i] = S.A[i - X[i]];
}

// No loop-carried dependencies for A and B because ptr aliases
// with both arrays
int *ptr = select ? A : B;
#pragma ivdep array(ptr)
for (int i = 0; i < N; i++) {
 A[i] = A[i - X[i]];
 B[i] = B[i - Y[i]];
}

// No loop-carried dependencies for A because ptr only aliases with A
int *ptr = &A[10];
#pragma ivdep array(ptr)
for (int i = 0; i < N; i++) {

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 A[i] = A[i - X[i]];
 B[i] = B[i - Y[i]];
}

6.2. Good Design Practices for Single Work-Item Kernel

If your OpenCL kernels contain loop structures, follow the Intel-recommended
guidelines to construct the kernels in a way that allows the Intel FPGA SDK for OpenCL
Offline Compiler to analyze them effectively. Well-structured loops are particularly
important when you direct the offline compiler to perform pipeline parallelism
execution in loops.

Avoid Pointer Aliasing

Insert the restrict keyword in pointer arguments whenever possible. Including the
restrict keyword in pointer arguments prevents the offline compiler from creating
unnecessary memory dependencies between non-conflicting read and write
operations. Consider a loop where each iteration reads data from one array, and then
it writes data to another array in the same physical memory. Without including the
restrict keyword in these pointer arguments, the offline compiler might assume
dependence between the two arrays, and extracts less pipeline parallelism as a result.

Construct "Well-Formed" Loops

A "well-formed" loop has an exit condition that compares against an integer bound,
and has a simple induction increment of one per iteration. Including "well-formed"
loops in your kernel improves performance because the offline compiler can analyze
these loops efficiently.

The following example is a "well-formed" loop:

for (i = 0; i < N; i++) {
 //statements
}

Important: "Well-formed" nested loops also contribute to maximizing kernel performance.

The following example is a "well-formed" nested loop structure:

for (i = 0; i < N; i++) {
 //statements
 for(j = 0; j < M; j++) {
 //statements
 }
}

Minimize Loop-Carried Dependencies

The loop structure below creates a loop-carried dependence because each loop
iteration reads data written by the previous iteration. As a result, each read operation
cannot proceed until the write operation from the previous iteration completes. The
presence of loop-carried dependencies decreases the extent of pipeline parallelism
that the offline compiler can achieve, which reduces kernel performance.

for (int i = 0; i < N; i++) {
 A[i] = A[i - 1] + i;
}

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The offline compiler performs a static memory dependence analysis on loops to
determine the extent of parallelism that it can achieve. In some cases, the offline
compiler might assume dependence between two array accesses, and extracts less
pipeline parallelism as a result. The offline compiler assumes loop-carried dependence
if it cannot resolve the dependencies at compilation time because of unknown
variables, or if the array accesses involve complex addressing.

To minimize loop-carried dependencies, following the guidelines below whenever
possible:

• Avoid pointer arithmetic.

Compiler output is suboptimal when the kernel accesses arrays by dereferencing
pointer values derived from arithmetic operations. For example, avoid accessing
an array in the following manner:

for (int i = 0; i < N; i++) {
 int t = *(A++);
 *A = t;
}

• Introduce simple array indexes.

Avoid the following types of complex array indexes because the offline compiler
cannot analyze them effectively, which might lead to suboptimal compiler output:

— Nonconstants in array indexes.

For example, A[K + i], where i is the loop index variable and K is an
unknown variable.

— Multiple index variables in the same subscript location.

For example, A[i + 2 × j], where i and j are loop index variables for a
double nested loop.

Note: The offline compiler can analyze the array index A[i][j] effectively
because the index variables are in different subscripts.

— Nonlinear indexing.

For example, A[i & C], where i is a loop index variable and C is a constant
or a nonconstant variable.

• Use loops with constant bounds in your kernel whenever possible.

Loops with constant bounds allow the offline compiler to perform range analysis
effectively.

Avoid Complex Loop Exit Conditions

The offline compiler evaluates exit conditions to determine if subsequent loop
iterations can enter the loop pipeline. There are times when the offline compiler
requires memory accesses or complex operations to evaluate the exit condition. In
these cases, subsequent iterations cannot launch until the evaluation completes,
decreasing overall loop performance.

Convert Nested Loops into a Single Loop

To maximize performance, combine nested loops into a single form whenever possible.
Restructuring nested loops into a single loop reduces hardware footprint and
computational overhead between loop iterations.

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following code examples illustrate the conversion of a nested loop into a single
loop:

Nested Loop Converted Single Loop

for (i = 0; i < N; i++) {
 //statements
 for (j = 0; j < M; j++) {
 //statements
 }
 //statements
}

for (i = 0; i < N*M; i++) {
 //statements
}

Avoid Conditional Loops

To maximize performance, avoid declaring conditional loops. Conditional loops are
tuples of loops that are declared within conditional statements such that one and only
one of the loops is expected to be reached. These loops cannot be efficiently
parallelized and result in a serialized implementation.

The following code examples illustrate the conversion of conditional loops to the a
more optimal implementation:

Conditional Loops Converted Loop

if (condition) {
 for (int i = 0; i < m; i++) {
 // statements
 }
}
else {
 for (int i = 0; i < m; i++) {
 // statements
 }
}

for (int i = 0; i < m; i++) {
 if (condition) {
 // statements
 }
 else {
 // statements
 }
}

Declare Variables in the Deepest Scope Possible

To reduce the hardware resources necessary for implementing a variable, declare the
variable prior to its use in a loop. Declaring variables in the deepest scope possible
minimizes data dependencies and hardware usage because the offline compiler does
not need to preserve the variable data across loops that do not use the variables.

Consider the following example:

int a[N];
for (int i = 0; i < m; ++i) {
 int b[N];
 for (int j = 0; j < n; ++j) {
 // statements
 }
}

The array a requires more resources to implement than the array b. To reduce
hardware usage, declare array a outside the inner loop unless it is necessary to
maintain the data through iterations of the outer loop.

Tip: Overwriting all values of a variable in the deepest scope possible also reduces the
resources necessary to present the variable.

6. Strategies for Improving Single Work-Item Kernel Performance

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Strategies for Improving NDRange Kernel Data
Processing Efficiency

Consider the following kernel code:

__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];
}

This kernel adds arrays a and b, one element at a time. Each work-item is responsible
for adding two elements, one from each array, and storing the sum into the array
answer. Without optimization, the kernel performs one addition per work-item.
To maximize the performance of your OpenCL kernel, consider implementing the
applicable optimization techniques to improve data processing efficiency.

1. Specifying a Maximum Work-group Size or a Required Work-Group Size on page
137

2. Kernel Vectorization on page 139

3. Multiple Compute Units on page 140

4. Combination of Compute Unit Replication and Kernel SIMD Vectorization on page
143

5. Reviewing Kernel Properties and Loop Unroll Status in the HTML Report on page
144

7.1. Specifying a Maximum Work-group Size or a Required Work-
Group Size

Specify the max_work_group_size or reqd_work_group_size attribute for your
kernels whenever possible. These attributes allow the Intel FPGA SDK for OpenCL
Offline Compiler to perform aggressive optimizations to match the kernel to hardware
resources without any excess logic.

Tip: For oneAPI DPC++-specific details, refer to Specify a Work-group Size topic in the
FPGA Optimization Guide for Intel oneAPI Toolkits.

The offline compiler assumes a default work-group size for your kernel depending on
certain constraints imposed during compilation time and runtime .

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/flags-attr-prag-ext/kernel-attributes/specify-a-work-group-size.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The offline compiler imposes the following constraints at compilation time:

• If you specify a value for the reqd_work_group_size attribute, the work-group
size must match this value.

• If you specify a value for the max_work_group_size attribute, the work-group
size must not exceed this value.

• If you do not specify values for reqd_work_group_size and
max_work_group_size, and the kernel contains a barrier, the offline compiler
defaults to a maximum work-group size of 256 work-items.

• If you do not specify values for both attributes and the kernel does not contain
any barrier, the offline compiler does not impose any constraint on the work-group
size at compilation time.

Tip: Use the CL_KERNEL_WORK_GROUP_SIZE and
CL_KERNEL_COMPILE_WORK_GROUP_SIZE queries to the
clGetKernelWorkGroupInfo API call to determine the work-group size constraints
that the offline compiler imposes on a particular kernel at compilation time.

The OpenCL standard imposes the following constraints at runtime:

• The work-group size in each dimension must divide evenly into the requested
NDRange size in each dimension.

• The work-group size must not exceed the device constraints specified by the
CL_DEVICE_MAX_WORK_GROUP_SIZE and CL_DEVICE_MAX_WORK_ITEM_SIZES
queries to the clGetDeviceInfo API call.

Caution: If the work-group size you specify for a requested NDRange kernel execution does not
satisfy all of the constraints listed above, the clEnqueueNDRangeKernel API call
fails with the error CL_INVALID_WORK_GROUP_SIZE.

If you do not specify values for both the reqd_work_group_size and
max_work_group_size attributes, the runtime determines a default work-group size
as follows:

• If the kernel contains a barrier or refers to the local work-item ID, or if you use
the clGetKernelWorkGroupInfo and clGetDeviceInfo API calls in your host
code to query the work-group size, the runtime defaults the work-group size to
one work-item.

• If the kernel does not contain a barrier or refer to the local work-item ID, or if
your host code does not query the work-group size, the default work-group size is
the global NDRange size.

When queuing an NDRange kernel (that is, not a single work-item kernel), specify an
explicit work-group size under the following conditions:

• If your kernel uses memory barriers, local memory, or local work-item IDs.

• If your host program queries the work-group size.

If your kernel uses memory barriers, perform one of the following tasks to minimize
hardware resources:

• Specify a value for the reqd_work_group_size attribute.

• Assign to the max_work_group_size attribute the smallest work-group size that
accommodates all your runtime work-group size requests.

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: Including a memory barrier at the end of your NDRange kernel causes compilation to
fail.

Specifying a smaller work-group size than the default at runtime might lead to
excessive hardware consumption. Therefore, if you require a work-group size other
than the default, specify the max_work_group_size attribute to set a maximum
work-group size. If the work-group size remains constant through all kernel
invocations, specify a required work-group size by including the
reqd_work_group_size attribute. The reqd_work_group_size attribute instructs
the offline compiler to allocate exactly the correct amount of hardware to manage the
number of work-items per work-group you specify. This allocation results in hardware
resource savings and improved efficiency in the implementation of kernel compute
units. By specifying the reqd_work_group_size attribute, you also prevent the
offline compiler from implementing additional hardware to support work-groups of
unknown sizes.

For example, the code fragment below assigns a fixed work-group size of 64 work-
items to a kernel:

__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];
}

7.2. Kernel Vectorization

To achieve higher throughput, you can vectorize your kernel. Kernel vectorization
allows multiple work-items to execute in a single instruction multiple data (SIMD)
fashion. You can direct the Intel FPGA SDK for OpenCL Offline Compiler to translate
each scalar operation in the kernel, such as addition or multiplication, to an SIMD
operation.

Include the num_simd_work_items attribute in your kernel code to direct the offline
compiler to perform more additions per work-item without modifying the body of the
kernel. The following code fragment applies a vectorization factor of four to the
original kernel code:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];
}

To use the num_simd_work_items attribute, you must also specify a required work-
group size of the kernel using the reqd_work_group_size attribute. The work-
group size you specify for reqd_work_group_size must be divisible by the value
you assign to num_simd_work_items. In the code example above, the kernel has a
fixed work-group size of 64 work-items. Within each work-group, the work-items are

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

distributed evenly among the four SIMD vector lanes. After the offline compiler
implements the four SIMD vector lanes, each work-item now performs four times
more work.

The offline compiler vectorizes the code and might coalesce memory accesses. You do
not need to change any kernel code or host code because the offline compiler applies
these optimizations automatically.

You can vectorize your kernel code manually, but you must adjust the NDRange in
your host application to reflect the amount of vectorization you implement. The
following example shows the changes in the code when you duplicate operations in the
kernel manually:

__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid * 4 + 0] = a[gid * 4 + 0] + b[gid * 4 + 0];
 answer[gid * 4 + 1] = a[gid * 4 + 1] + b[gid * 4 + 1];
 answer[gid * 4 + 2] = a[gid * 4 + 2] + b[gid * 4 + 2];
 answer[gid * 4 + 3] = a[gid * 4 + 3] + b[gid * 4 + 3];
}

In this form, the kernel loads four elements from arrays a and b, calculates the sums,
and stores the results into the array answer. Because the FPGA pipeline loads and
stores data to neighboring locations in memory, you can manually direct the offline
compiler to coalesce each group of four load and store operations.

Attention: Each work-item handles four times as much work after you implement the manual
optimizations. As a result, the host application must use an NDRange that is four
times smaller than in the original example. On the contrary, you do not need to adjust
the NDRange size when you exploit the automatic vectorization capabilities of the
offline compiler. You can adjust the vector width with minimal code changes by using
the num_simd_work_items attribute.

7.3. Multiple Compute Units

To achieve higher throughput, the Intel FPGA SDK for OpenCL Offline Compiler can
generate multiple compute units for each kernel. The offline compiler implements each
compute unit as a unique pipeline. Generally, each kernel compute unit can execute
multiple work-groups simultaneously.

To increase overall kernel throughput, the hardware scheduler in the FPGA dispatches
work-groups to additional available compute units. A compute unit is available for
work-group assignments provided that it has not reached its full capacity.

Assume each work-group takes the same amount of time to complete its execution. If
the offline compiler implements two compute units, each compute unit executes half
of the work-groups. Because the hardware scheduler dispatches the work-groups, you
do not need to manage this process in your own code.

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The offline compiler does not automatically determine the optimal number of compute
units for a kernel. To increase the number of compute units for your kernel
implementation, you must specify the number of compute units that the offline
compiler should create using the num_compute_units attribute, as shown in the
code sample below.

__attribute__((num_compute_units(2)))
__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];
}

Increasing the number of compute units achieves higher throughput. However, as
shown in the figure below, you do so at the expense of increasing global memory
bandwidth among the compute units. You also increase hardware resource utilization.

Figure 76. Data Flow with Multiple Compute Units

Global Memory

Sum Kernel
Compute Unit #1

Loads

Stores

Sum Kernel
Compute Unit #2

Loads

Stores

7.3.1. Compute Unit Replication versus Kernel SIMD Vectorization

In most cases, you should implement the num_simd_work_items attribute to
increase data processing efficiency before using the num_compute_units attribute.

Both the num_compute_units and num_simd_work_items attributes increase
throughput by increasing the amount of hardware that the Intel FPGA SDK for OpenCL
Offline Compiler uses to implement your kernel. The num_compute_units attribute
modifies the number of compute units to which work-groups can be scheduled, which
also modifies the number of times a kernel accesses global memory. In contrast, the
num_simd_work_items attribute modifies the amount of work a compute unit can
perform in parallel on a single work-group. The num_simd_work_items attribute
duplicates only the datapath of the compute unit by sharing the control logic across
each SIMD vector lane.

Generally, using the num_simd_work_items attribute leads to more efficient
hardware than using the num_compute_units attribute to achieve the same goal.
The num_simd_work_items attribute also allows the offline compiler to coalesce
your memory accesses.

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. Compute Unit Replication versus Kernel SIMD Vectorization

Global Memory Global Memory

LD

LD

LD

LD

LDST

ST

ST

ST

ST

Kernel Compute
Unit #1

Kernel Compute
Unit #4

Kernel Compute
Unit #3

Kernel Compute
Unit #2

x4 SIMD Kernel
Compute Unit

Four Compute Units
(num_compute_units(4))

Compute Unit with Four SIMD Lanes
(num_simd_work_items(4))

Multiple compute units competing for global memory might lead to undesired memory
access patterns. You can alter the undesired memory access pattern by introducing
the num_simd_work_items attribute instead of the num_compute_units attribute.
In addition, the num_simd_work_items attribute potentially offers the same
computational throughput as the equivalent kernel compute unit duplication that the
num_compute_units attribute offers.

You cannot implement the num_simd_work_items attribute in your kernel under the
following circumstances:

• The value you specify for num_simd_work_items is not 2, 4, 8 or 16.

• The value of reqd_work_group_size is not divisible by
num_simd_work_items.

For example, the following declaration is incorrect because 50 is not divisible by 4:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(50,0,0)))

• Kernels with complex control flows. You cannot vectorize lines of code within a
kernel in which different work-items follow different control paths (for example,
the control paths depend on get_global_ID or get_local_ID).

During kernel compilation, the offline compiler issues messages informing you whether
the implementation of vectorization optimizations is successful. Kernel vectorization is
successful if the reported vectorization factor matches the value you specify for the
num_simd_work_items attribute.

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.4. Combination of Compute Unit Replication and Kernel SIMD
Vectorization

If your replicated or vectorized OpenCL kernel does not fit in the FPGA, you can
modify the kernel by both replicating the compute unit and vectorizing the kernel.
Include the num_compute_units attribute to modify the number of compute units
for the kernel, and include the num_simd_work_items attribute to take advantage of
kernel vectorization.

Consider a case where a kernel with a num_simd_work_items attribute set to 16
does not fit in the FPGA. The kernel might fit if you modify it by duplicating a narrower
SIMD kernel compute unit. Determining the optimal balance between the number of
compute units and the SIMD width might require some experimentation. For example,
duplicating a four lane-wide SIMD kernel compute unit three times might achieve
better throughput than duplicating an eight lane-wide SIMD kernel compute unit
twice.

The following example code shows how you can combine the num_compute_units
and num_simd_work_items attributes in your OpenCL code:

__attribute__((num_simd_work_items(4)))
__attribute__((num_compute_units(3)))
__attribute__((reqd_work_group_size(8,8,1)))
__kernel void matrixMult(__global float * restrict C,
 __global float * restrict A,
. . .

The figure below illustrates the data flow of the kernel described above. The
num_compute_units implements three replicated compute units. The
num_simd_work_items implements four SIMD vector lanes.

Figure 78. Optimizing Throughput by Combining Compute Unit Replication and Kernel
SIMD Vectorization

Global Memory

LD

LD

LD

ST

ST

ST

x4 SIMD Kernel
Compute Unit #1

x4 SIMD Kernel
Compute Unit #3

x4 SIMD Kernel
Compute Unit #2

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Attention: You can also enable the resource-driven optimizer to determine automatically the best
combination of num_compute_units and num_simd_work_items.

Important: It is more time-consuming to compile a hardware design that fills the entire FPGA than
smaller designs. When you adjust your kernel optimizations, remove the increased
number of SIMD vector lanes and compute units prior to recompiling the kernel.

7.5. Reviewing Kernel Properties and Loop Unroll Status in the
HTML Report

When you compile an NDRange kernel, the Intel FPGA SDK for OpenCL Offline
Compiler generates a <your_kernel_filename>/reports/report.html file that
provides information on select kernel properties and loop unroll status.

Related Information

Reviewing Your Kernel's report.html File on page 15

7. Strategies for Improving NDRange Kernel Data Processing Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Strategies for Improving Memory Access Efficiency
Memory access efficiency often dictates the overall performance of your OpenCL
kernel. When developing your OpenCL code, it is advantageous to minimize the
number of global memory accesses. The OpenCL Specification version 1.0 describes
four memory types: global, constant, local, and private memories.

Tip: For Intel oneAPI DPC++/C++ Compiler-specific details, refer to Memory Accesses
section in the FPGA Optimization Guide for Intel oneAPI Toolkits.

An interconnect topology connects shared global, constant, and local memory systems
to their underlying memory. Interconnect includes access arbitration to memory ports.

Memory accesses compete for shared memory resources (that is, global, local, and
constant memories). If your OpenCL kernel performs a large number of memory
accesses, the Intel FPGA SDK for OpenCL Offline Compiler must generate complex
arbitration logic to handle the memory access requests. The complex arbitration logic
might cause a drop in the maximum operating frequency (fMAX), which degrades
kernel performance.

The following sections discuss memory access optimizations in detail. In summary,
minimizing global memory accesses is beneficial for the following reasons:

• Typically, increases in OpenCL kernel performance lead to increases in global
memory bandwidth requirements.

• The maximum global memory bandwidth is much smaller than the maximum local
memory bandwidth.

• The maximum computational bandwidth of the FPGA is much larger than the
global memory bandwidth.

Attention: Use local, private or constant memory whenever possible to increase
the memory bandwidth of the kernel.

1. General Guidelines on Optimizing Memory Accesses on page 146

2. Optimize Global Memory Accesses on page 146

3. Performing Kernel Computations Using Constant, Local or Private Memory on page
151

4. Improving Kernel Performance by Banking the Local Memory on page 154

5. Optimizing Accesses to Local Memory by Controlling the Memory Replication
Factor on page 157

6. Minimizing the Memory Dependencies for Loop Pipelining on page 159

7. Static Memory Coalescing on page 160

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/memory-accesses.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

8.1. General Guidelines on Optimizing Memory Accesses

Optimizing the memory accesses in your OpenCL kernels can improve overall kernel
performance.

Consider implementing the following techniques for optimizing memory accesses,
whenever possible:

• If your OpenCL program has a pair of kernels—one produces data and the other
one consumes that data—convert them into a single kernel that performs both
functions. Also, implement helper functions to logically separate the functions of
the two original kernels.

FPGA implementations favor one large kernel over separate smaller kernels.
Kernel unification removes the need to write the results from one kernel into
global memory temporarily before fetching the same data in the other kernel.

• The Intel FPGA SDK for OpenCL Offline Compiler implements local memory in
FPGAs very differently than in GPUs. If your OpenCL kernel contains code to avoid
GPU-specific local memory bank conflicts, remove that code because the offline
compiler generates hardware that avoids local memory bank conflicts
automatically whenever possible.

8.2. Optimize Global Memory Accesses

The Intel FPGA SDK for OpenCL Offline Compiler uses SDRAM as global memory. By
default, the offline compiler configures global memory in a burst-interleaved
configuration. The offline compiler interleaves global memory across each of the
external memory banks.

In most circumstances, the default burst-interleaved configuration leads to the best
load balancing between the memory banks. However, in some cases, you might want
to partition the banks manually as two non-interleaved (and contiguous) memory
regions to achieve better load balancing.

The figure below illustrates the differences in memory mapping patterns between
burst-interleaved and non-interleaved memory partitions.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. Global Memory Partitions

0x7FFF_FFFF
Address

0x7FFF_FC00
0x7FFF_FBFF

0x7FFF_F800

0x0000_0FFF

0x0000_0C00
0x0000_0BFF

0x0000_0800
0x0000_07FF

0x0000_0400
0x0000_03FF

0x0000_0000

Bank 2

Bank 1

Bank 2

Bank 1

Bank 2

Bank 1

Bank 2

Bank 1

Address
0x7FFF_FFFF

0x4000_0000
0x3FFF_FFFF

0x0000_0000

Burst-Interleaved Separate Partitions

Global Memory Bandwidth Use

To ensure the global memory bandwidth listed in the board specification file is utilized
completely, calculating the kernel bandwidth use is beneficial. The report.html file also
displays the kernel bandwidth values in the global memory view of the System Viewer.
The following formulas explain how you can calculate this value on a per-LSU basis:

Figure 80. Formulas for Calculating Kernel Bandwidth Use

BW₁ = KWIDTH * FMAX

BW₂ = MWIDTH * FMAX

BW₃ =
MaxBandwidth * NUM_INTERLEAVING_CHANNELS

NUM_CHANNELS

LSU bandwidth = min(BW₁,BW₂,BW₃) MB/s

The LSU bandwidth equation is the minimum of three bottlenecks you need to
calculate the use of global memory bandwidth. The remaining equations represent
three bottlenecks that can limit the LSU bandwidth. These formulas represent the
theoretical maximum bandwidth an LSU may consume, ignoring all other LSUs. The
actual bandwidth depends on the LSU's access pattern and the interconnect's
arbitration between all LSUs. To get an estimate of the overall bandwidth, a sum of
the LSU bandwidths is available in the controller of the global memory view of the
System Viewer.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following table describes the variables used in the above equations:

Variable Description

KWIDTH Byte-width of the LSU on the kernel. In the report.html file, it is referred to as
WIDTH.

MWIDTH Byte-width of the LSU facing the external memory. In the report.html file, it is
referred to as the <Memory Name>_Width.

FMAX Clock speed of the kernel in MHz. In the report.html file, you can identify this as
the design’s clock speed.

MaxBandwidth Maximum bandwidth (measured in MB/s) the global memory can achieve. You can
find this in the board_spec.xml file for the specific global memory.

NUM_CHANNELS Number of interfaces an external memory has. You can find this by counting the
number of interfaces listed in the board_spec.xml file under that memory.

NUM_INTERLEAVING_CHANNELS When interleaving is enabled, this is the number of channels. Otherwise, this value is
1.

BW1 Bottleneck at the kernel boundary. Therefore, BW1 uses only kernel values, which
means, values you can change by optimizing the design. If this is limiting the overall
bandwidth use than it indicates, changing your design can improve the bottleneck at
the kernel boundary.

BW2 Bottleneck at the memory interface to the kernel. Therefore, BW2 uses the size of the
memory interface and the FMAX, which means either improving FMAX of your design
or switching to a board with a wider memory interface can improve the bandwidth
use.

BW3 Bottleneck in the external memory. Therefore, BW3 uses external memory properties
exclusively, and if this is limiting your design, you have utilized the board bandwidth
completely.

8.2.1. Contiguous Memory Accesses

Contiguous memory access optimizations analyze statically the access patterns of
global load and store operations in a kernel. For sequential load or store operations
that occur for the entire kernel invocation, the Intel FPGA SDK for OpenCL Offline
Compiler directs the kernel to access consecutive locations in global memory.

Consider the following code example:

__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict c)
{
 size_t gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];
}

The load operation from array a uses an index that is a direct function of the work-
item global ID. By basing the array index on the work-item global ID, the offline
compiler can direct contiguous load operations. These load operations retrieve the
data sequentially from the input array, and sends the read data to the pipeline as
required. Contiguous store operations then store elements of the result that exits the
computation pipeline in sequential locations within global memory.

Tip: Use the const qualifier for any read-only global buffer so that the offline compiler can
perform more aggressive optimizations on the load operation.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure illustrates an example of the contiguous memory access
optimization:

Figure 81. Contiguous Memory Access

Global
Memory

Vector
Addition
Pipeline

Consecutive
Load

Consecutive
Load

Consecutive
Store

a[N-1] a[3] a[2] a[1] a[0]a[5] a[4]a[N-2]

b[N-1] b[3] b[2] b[1] b[0]b[5] b[4]b[N-2]

c[0] c[1] c[3] c[N-2] c[N-1]c[4] c[5]c[2]

Contiguous load and store operations improve memory access efficiency because they
lead to increased access speeds and reduced hardware resource needs. The data
travels in and out of the computational portion of the pipeline concurrently, allowing
overlaps between computation and memory accesses. If possible, use work-item IDs
that index consecutive memory locations for load and store operations that access
global memory. Sequential accesses to global memory increase memory efficiency
because they provide an ideal access pattern.

8.2.2. Manual Partitioning of Global Memory

You can partition the memory manually so that each buffer occupies a different
memory bank.

The default burst-interleaved configuration of the global memory prevents load
imbalance by ensuring that memory accesses do not favor one external memory bank
over another. However, you have the option to control the memory bandwidth across a
group of buffers by partitioning your data manually.

• The Intel FPGA SDK for OpenCL Offline Compiler cannot burst-interleave across
different memory types. To manually partition a specific type of global memory ,
compile your OpenCL kernels with the -no-
interleaving=<global_memory_type> flag to configure each bank of a
certain memory type as non-interleaved banks.

If your kernel accesses two buffers of equal size in memory, you can distribute
your data to both memory banks simultaneously regardless of dynamic scheduling
between the loads. This optimization step might increase your apparent memory
bandwidth.

If your kernel accesses heterogeneous global memory types, include the -no-
interleaving=<global_memory_type> option in the aoc command for each
memory type that you want to partition manually.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about the usage of the -no-
interleaving=<global_memory_type> option, refer to the Disabling Burst-
Interleaving of Global Memory (-no-interleaving=<global_memory_type>) section of
the Intel FPGA SDK for OpenCL Programming Guide.

Related Information

Disabling Burst-Interleaving of Global Memory (-no-
interleaving=<global_memory_type>)

8.2.2.1. Heterogeneous Memory Buffers

You can execute your kernel on an FPGA board that includes multiple global memory
types, such as DDR, QDR, and on-chip RAMs.

If your FPGA board offers heterogeneous global memory types, keep in mind that they
handle different memory accesses with varying efficiencies.

For example:

• Use DDR SDRAM for long sequential accesses.

• Use QDR SDRAM for random accesses.

• Use on-chip RAM for random low latency accesses.

For more information about how to allocate buffers in global memory and how to
modify your host application to use heterogeneous buffers, refer to the Specifying
Buffer Location in Global Memory and Allocating OpenCL Buffer for Manual Partitioning
of Global Memory sections of the Intel FPGA SDK for OpenCL Programming Guide.

Related Information

• Partitioning Buffers Across Different Memory Types (Heterogeneous Memory)

• Allocating OpenCL Buffer for Manual Partitioning of Global Memory

8.2.3. Optimizing for Two or More Banks of Global Memory

The Intel FPGA SDK for OpenCL Offline Compiler automatically creates a global
memory interconnect designed to deliver most of the available global memory
bandwidth from the BSP to the kernel system.

The throughput can be saturated using read-only, write-only, or mixed read/write
traffic. By default, traffic is interleaved across all available banks. If you find that the
throughput is insufficient, Intel recommends using the -no-interleaving option.

Related Information

• Disabling Burst-Interleaving of Global Memory (-no-
interleaving=<global_memory_type>)

• Manual Partitioning of Global Memory on page 149

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

150

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-burst-interleaving-of-global.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-burst-interleaving-of-global.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/partitioning-buffers-across-different.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/allocating-opencl-buffers-for-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-burst-interleaving-of-global.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-burst-interleaving-of-global.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.3. Performing Kernel Computations Using Constant, Local or
Private Memory

To optimize memory access efficiency, minimize the number for global memory
accesses by performing your OpenCL kernel computations in constant, local, or private
memory.

To minimize global memory accesses, you must first preload data from a group of
computations from global memory to constant, local, or private memory. You perform
the kernel computations on the preloaded data, and then write the results back to
global memory.

8.3.1. Constant Cache Memory

Constant memory resides in global memory, but the kernel loads it into an on-chip
cache shared by all work-groups at runtime. For example, if you have read-only data
that all work-groups use, and the data size of the constant buffer fits into the constant
cache, allocate the data to the constant memory. The constant cache is most
appropriate for high-bandwidth table lookups that are constant across several
invocations of a kernel. The constant cache is optimized for high cache hit
performance.

By default, the constant cache size is 16 kB. You can specify the constant cache size
by including the -const-cache-bytes=<N> option in your aoc command, where
<N> is the constant cache size in bytes.

Unlike global memory accesses that have extra hardware for tolerating long memory
latencies, the constant cache suffers large performance penalties for cache misses. If
the __constant arguments in your OpenCL kernel code cannot fit in the cache, you
might achieve better performance with __global const arguments instead. If the
host application writes to constant memory that is already loaded into the constant
cache, the cached data is discarded (that is, invalidated) from the constant cache.

For more information about the -const-cache-bytes=<N> option, refer to the
Configuring Constant Memory Cache Size (-const-cache-bytes=<N>) section of the
Intel FPGA SDK for OpenCL Programming Guide.

Related Information

Configuring Constant Memory Cache Size (-const-cache-bytes=<N>)

8.3.2. Preloading Data to Local Memory

Local memory is considerably smaller than global memory, but it has significantly
higher throughput and much lower latency. Unlike global memory accesses, the kernel
can access local memory randomly without any performance penalty. When you
structure your kernel code, attempt to access the global memory sequentially, and
buffer that data in on-chip local memory before your kernel uses the data for
calculation purposes.

The Intel FPGA SDK for OpenCL Offline Compiler implements OpenCL local memory in
on-chip memory blocks in the FPGA. On-chip memory blocks have two read and write
ports, and they can be clocked at an operating frequency that is double the operating
frequency of the OpenCL kernels. This doubling of the clock frequency allows the

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

151

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/configuring-constant-memory-cache-size.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

memory to be “double pumped,” resulting in twice the bandwidth from the same
memory. As a result, each on-chip memory block supports up to four simultaneous
accesses.

Ideally, the accesses to each bank are distributed uniformly across the on-chip
memory blocks of the bank. Because only four simultaneous accesses to an on-chip
memory block are possible in a single clock cycle, distributing the accesses helps avoid
bank contention.

This banking configuration is usually effective; however, the offline compiler must
create a complex memory system to accommodate a large number of banks. A large
number of banks might complicate the arbitration network and can reduce the overall
system performance.

Because the offline compiler implements local memory that resides in on-chip memory
blocks in the FPGA, the offline compiler must choose the size of local memory systems
at compilation time. The method the offline compiler uses to determine the size of a
local memory system depends on the local data types used in your OpenCL code.

Optimizing Local Memory Accesses

To optimize local memory access efficiency, consider the following guidelines:

• Implementing certain optimizations techniques, such as loop unrolling, might lead
to more concurrent memory accesses.

Caution: Increasing the number of memory accesses can complicate the memory
systems and degrade performance.

• Simplify the local memory subsystem by limiting the number of unique local
memory accesses in your kernel to four or less, whenever possible.

You achieve maximum local memory performance when there are four or less
memory accesses to a local memory system. If the number of accesses to a
particular memory system is greater than four, the offline compiler arranges the
on-chip memory blocks of the memory system into a banked configuration.

• If you have function scope local data, the offline compiler statically sizes the local
data that you define within a function body at compilation time. You should define
local memories by directing the offline compiler to set the memory to the required
size, rounded up to the closest value that is a power of two.

• Avoid the use of the local_mem_size attribute. Use the __local kernel variable
instead of __local kernel arguments.

For more information, refer to the Programming Strategies for Optimizing Pointer-
to-Local Memory Size section of the Intel FPGA SDK for OpenCL Pro Edition
Programming Guide.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

152

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/programming-strategies-for-optimizing-23307.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/programming-strategies-for-optimizing-23307.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When accessing local memory, use the simplest address calculations possible and
avoid pointer math operations that are not mandatory.

Intel recommends this coding style to reduce FPGA resource utilization and
increase local memory efficiency by allowing the offline compiler to make better
guarantees about access patterns through static code analysis. Complex address
calculations and pointer math operations can prevent the offline compiler from
creating independent memory systems representing different portions of your
data, leading to increased area usage and decreased runtime performance.

• Avoid storing pointers to memory whenever possible. Stored pointers often
prevent static compiler analysis from determining the data sets accessed, when
the pointers are subsequently retrieved from memory. Storing pointers to memory
almost always leads to suboptimal area and performance results.

• Create local array elements that are a power of 2 bytes to allow the offline
compiler to provide an efficient memory configuration.

Whenever possible, the offline compiler automatically pads the elements of the
local memory to be a power of 2 to provide a more efficient memory configuration.
For example, if you have a struct containing 3 chars, the offline compiler pads it to
4 bytes, instead of creating a narrower and deeper memory with multiple accesses
(that is, a 1-byte wide memory configuration). However, there are cases where
the offline compiler might not pad the memory, such as when the kernel accesses
local memory indirectly through pointer arithmetic.

To determine if the offline compiler has padded the local memory, review the
memory dimensions in the Kernel Memory Viewer. If the offline compiler fails to
pad the local memory, it prints the following message in the area report:

Memory system contains arrays whose element size is not a power of two. This
may result in extra loads and stores, leading to stalls. Try padding structs
to a power of two, or break them into multiple arrays of smaller elements.

Related Information

Programming Strategies for Optimizing Pointer-to-Local Memory Size

8.3.3. Storing Variables and Arrays in Private Memory

The Intel FPGA SDK for OpenCL Offline Compiler implements private memory using
FPGA registers or block RAMs. The offline compiler analyzes the private memory
accesses and promotes them to register accesses. Scalar variables, for example float,
int and char, are mostly promoted. Aggregate data types are promoted, if accesses
are compile-time constants. Typically, private memory is useful for storing single
variables or small arrays. Registers are plentiful hardware resources in FPGAs, and it is
almost always better to use private memory instead of other memory types whenever
possible. The kernel can access private memories in parallel, allowing them to provide
more bandwidth than any other memory type (that is, global, local, and constant
memories).

For more information about the implementation of private memory using registers,
refer to the Inferring a Register section of the Intel FPGA SDK for OpenCL
Programming Guide.

Related Information

Inferring a Register

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

153

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/programming-strategies-for-optimizing-23307.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/inferring-a-register.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.4. Improving Kernel Performance by Banking the Local Memory

Specifying the numbanks(N) and bankwidth(M) advanced kernel attributes allows
you to configure the local memory banks for parallel memory accesses.The banking
geometry described by these advanced kernel attributes determines which elements of
the local memory system your kernel can access in parallel.

The following code example depicts an 8 x 4 local memory system that is
implemented in a single bank. As a result, no two elements in the system can be
accessed in parallel.

local int lmem[8][4];

#pragma unroll
for(int i = 0; i<4; i+=2) {
 lmem[i][x] = …;
}

Figure 82. Serial Accesses to an 8 x 4 Local Memory System

0,1

2,32,22,12,0

1,31,21,11,0

0,30,20,0

3,33,23,13,0

4,34,24,14,0

5,35,25,15,0

6,36,26,16,0

7,37,27,17,0

local int lmem[8][4]

serial access

To improve performance, you can add numbanks(N) and bankwidth(M) in your
code to define the number of memory banks and the bank widths in bytes. The
following code implements eight memory banks, each 16-bytes wide. This memory
bank configuration enables parallel memory accesses down the 8 x 4 array.

local int __attribute__((numbanks(8),
 bankwidth(16)))
 lmem[8][4];
#pragma unroll
for (int i = 0; i < 4; i+=2) {
 lmem[i][x & 0x3] = …;
}

Attention: To enable parallel access, you must mask the dynamic access on the lower array
index. Masking the dynamic access on the lower array index informs the Intel FPGA
SDK for OpenCL Offline Compiler that x does not exceed the lower index bounds.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 83. Parallel Access to an 8 x 4 Local Memory System with Eight 16-Byte-Wide
Memory Banks

0,1

2,32,22,12,0

1,31,21,11,0

0,30,20,0

3,33,23,13,0

4,34,24,14,0

5,35,25,15,0

6,36,26,16,0

7,37,27,17,0

local int lmem[8][4]

parallel access Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

By specifying different values for the numbanks(N) and bankwidth(M) kernel
attributes, you can change the parallel access pattern. The following code implements
four memory banks, each 4-bytes wide. This memory bank configuration enables
parallel memory accesses across the 8 x 4 array.

local int __attribute__((numbanks(4),
 bankwidth(4)))
 lmem[8][4];

#pragma unroll
for (int i = 0; i < 4; i+=2) {
 lmem[x][i] = …;
}

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 84. Parallel Access to an 8 x 4 Local Memory System with Four 4-Byte-Wide
Memory Banks

0,1

2,32,22,12,0

1,31,21,11,0

0,30,20,0

3,33,23,13,0

4,34,24,14,0

5,35,25,15,0

6,36,26,16,0

7,37,27,17,0

local int lmem[8][4]

Bank 0

Bank 1

Bank 2

Bank 3

parallel
access

8.4.1. Optimizing the Geometric Configuration of Local Memory Banks
Based on Array Index

By default, the Intel FPGA SDK for OpenCL Offline Compiler might attempt to improve
performance by automatically banking a local memory system. The Intel FPGA SDK for
OpenCL includes advanced features that allow you to customize the banking geometry
of your local memory system. To configure the geometry of local memory banks,
include the numbanks(N) and bankwidth(M) kernel attributes in your OpenCL
kernel .

The following code examples illustrate how the bank geometry changes based on the
values you assign to numbanks and bankwidth.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 20. Effects of numbanks and bankwidth on the Bank Geometry of 2 x 4 Local
Memory System
The first and last rows of this table illustrate how to bank memory on the upper and lower indexes of a 2D
array, respectively.

Code Example Bank Geometry

local int
__attribute__((numbanks(2),
 bankwidth(16)))
 lmem[2][4];

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

local int
__attribute__((numbanks(2),
 bankwidth(8)))
 lmem[2][4];

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

local int
__attribute__((numbanks(2),
 bankwidth(4)))
 lmem[2][4];

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

local int
__attribute__((numbanks(4),
 bankwidth(8)))
 lmem[2][4]; 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

Bank 2

Bank 3

local int
__attribute__((numbanks(4),
 bankwidth(4)))
 lmem[2][4]; 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

Bank 2

Bank 3

Related Information

Kernel Attributes for Configuring Local and Private Memory Systems

8.5. Optimizing Accesses to Local Memory by Controlling the
Memory Replication Factor

The memory replication factor is the number of M20K memory blocks that your design
uses to implement the local memory system. To control the memory replication factor,
use the max_replicates kernel attribute in your OpenCL kernel.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

157

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/memory-attributes-for-configuring-kernel.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel's M20K memory blocks have two physical ports. The number of logical ports that
are available in each M20K block depends on the degree of pumping. Pumping is a
measure of the clock frequency of the M20K blocks relative to the rest of the design.

Consider the following code example where the singlepump attribute is applied to a
local memory system, lmem, which has three read accesses and one write access. The
singlepump attribute indicates that the M20K blocks runs at the same frequency as
the rest of the design.

__kernel void three_copies(int raddr, int waddr) {
 int __attribute__((memory,
 numbanks(1),
 singlepump,
 max_replicates(3)))
 lmem[16];

 lmem[waddr] = lmem[raddr] + lmem[raddr + 1] + lmem[raddr + 2];
 // do something with lmem
}

Figure 85. Accesses to Single-Pumped M20K Memory Blocks

M20K

M20K

M20K

read_0

read_1

read_2

write

lmem

The compiler creates an arbitration-free network, as shown in Accesses to Single-
Pumped M20K Memory Blocks. Each single-pumped M20K block has two logical ports
available. Each write port in the local memory system must be connected to all M20K
blocks that your design uses to implement the memory system. Each read port in the
local memory system must be connected to one M20K block. Because of these
connection constraints, there must be three M20K blocks to implement the specified
number of ports in lmem.

Note: If you change max_replicates(3) to max_replicates(1), you observes one
M20K block with arbitration between the three reads.

If you include the doublepump kernel attribute in your local variable declaration, you
specify that the M20K memory blocks runs at double the frequency as the rest of the
design.

__kernel void three_copies(int raddr, int waddr) {
 int __attribute__((memory,
 numbanks(1),
 doublepump))
 lmem[16];

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 lmem[waddr] = lmem[raddr] + lmem[raddr + 1] + lmem[raddr + 2];
 // do something with lmem
}

Figure 86. Accesses to Double-Pumped M20K Memory Blocks

M20K

read_0
read_1
read_2
write

lmem

Each double-pumped M20K block has four logical ports available. As such, there only
needs to be one M20K block to implement three read ports and one write port in
lmem.

Attention: • Double pumping the memory increases resource overhead. Use the doublepump
kernel attribute only if it results in actual M20K savings, improves performance, or
both.

• Stores must be connected to every replicate. Hence, if there are more than three
stores, the memory is not replicated. Local memory replication works well with
single store.

• Because the entire memory system is replicated, you might observe potentially
large M20K memory blocks.

Related Information

Kernel Attributes for Configuring Local and Private Memory Systems

8.6. Minimizing the Memory Dependencies for Loop Pipelining

Intel FPGA SDK for OpenCL Offline Compiler ensures that the memory accesses from
the same thread respects the program order. When you compile an NDRange kernel,
use barriers to synchronize memory accesses across threads in the same work-group.

Loop dependencies might introduce bottlenecks for single work-item kernels due to
latency associated with the memory accesses. The offline compiler defers a memory
operation until a dependent memory operation completes. This can impact the loop
initiation interval (II). The offline compiler indicates the memory dependencies in the
optimization report.

To minimize the impact of memory dependencies for loop pipelining:

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

159

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/memory-attributes-for-configuring-kernel.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Ensure that the offline compiler does not assume false dependencies.

When the static memory dependence analysis fails to prove that dependency does
not exist, the offline compiler assumes that a dependency exists and modifies the
kernel execution to enforce the dependency. Impact of the dependency
enforcement is lower if the memory system is stall-free.

— Write after read operations with data dependency on a load-store unit can
take just two clock cycles (II=2). Other stall-free scenarios can take up to
seven clock cycles.

— Read after write (control dependency) operation can be fully resolved by the
offline compiler.

• Override the static memory dependence analysis by adding the line #pragma
ivdep before the loop in your kernel code if you are sure that it carries no
dependencies.

8.7. Static Memory Coalescing

Static memory coalescing is an Intel FPGA SDK for OpenCL Offline Compiler
optimization step that attempts to reduce the number of times a kernel accesses non-
private memory.

The figure below shows a common case where kernel performance might benefit from
static memory coalescing:

Figure 87. Static Memory Coalescing

__kernel void summation(__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid * 4 + 0] = a[gid * 4 + 0] + b[gid * 4 + 0];
 answer[gid * 4 + 1] = a[gid * 4 + 1] + b[gid * 4 + 1];
 answer[gid * 4 + 2] = a[gid * 4 + 2] + b[gid * 4 + 2];
 answer[gid * 4 + 3] = a[gid * 4 + 3] + b[gid * 4 + 3];
}

__kernel void summation(__global const float4 * restrict a,
 __global const float4 * restrict b,
 __global float4 * restrict answer)
{
 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];
}

Original Kernel

With Coalescing
Memory

Consider the following vectorized kernel:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

{
 size_t gid = get_global_id(0);

 answer[gid] = a[gid] + b[gid];
}

The OpenCL kernel performs four load operations that access consecutive locations in
memory. Instead of performing four memory accesses to competing locations, the
offline compiler coalesces the four loads into a single wider vector load. This
optimization reduces the number of accesses to a memory system and potentially
leads to better memory access patterns.

Although the offline compiler performs static memory coalescing automatically when it
vectorizes the kernel, you should use wide vector loads and stores in your OpenCL
code whenever possible to ensure efficient memory accesses. To implement static
memory coalescing manually, you must write your code in such a way that a
sequential access pattern can be identified at compilation time. The original kernel
code shown in the figure above can benefit from static memory coalescing because all
the indexes into buffers a and b increment with offsets that are known at compilation
time. In contrast, the following code does not allow static memory coalescing to occur:

__kernel void test (__global float * restrict a,
 __global float * restrict b,
 __global float * restrict answer;
 __global int * restrict offsets)
{
 size_t gid = get_global_id(0);

 answer[gid*4 + 0] = a[gid*4 + 0 + offsets[gid]] + b[gid*4 + 0];
 answer[gid*4 + 1] = a[gid*4 + 1 + offsets[gid]] + b[gid*4 + 1];
 answer[gid*4 + 2] = a[gid*4 + 2 + offsets[gid]] + b[gid*4 + 2];
 answer[gid*4 + 3] = a[gid*4 + 3 + offsets[gid]] + b[gid*4 + 3];
}

The value offsets[gid] is unknown at compilation time. As a result, the offline
compiler cannot statically coalesce the read accesses to buffer a.

8. Strategies for Improving Memory Access Efficiency

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Strategies for Optimizing FPGA Area Usage
Area usage is an important design consideration if your OpenCL kernels are executable
on FPGAs of different sizes. When you design your OpenCL application, Intel
recommends that you follow certain design strategies for optimizing hardware area
usage.

Optimizing kernel performance generally requires additional FPGA resources. In
contrast, area optimization often results in performance decreases. During kernel
optimization, Intel recommends that you run multiple versions of the kernel on the
FPGA board to determine the kernel programming strategy that generates the best
size versus performance trade-off.

9.1. Compilation Considerations

You can direct the Intel FPGA SDK for OpenCL Offline Compiler to perform area usage
analysis during kernel compilation.

1. To review the estimated resource usage summary on-screen, compile your kernel
by including the -report flag in your aoc command. To review kernel-specific
area usage information, refer to the <your_kernel_filename>/reports/
report.html file.

2. If possible, perform floating-point computations by compiling your OpenCL kernel
with the -fpc or -fp-relaxed option of the aoc command.

For more usage information about the -report, -fp-relaxed and -fpc options,
refer to the Displaying Estimated Resource Usage Summary (-report), Relaxing Order
of Floating-Point Operations (-fp-relaxed), and Reducing Floating-Point Operations (-
fpc) sections of the Intel FPGA SDK for OpenCL Programming Guide.

For more information about floating-point operations, refer to Optimize Floating-Point
Operations.

Related Information

• Reviewing Area Information on page 36

• Displaying the Estimated Resource Usage Summary On-Screen (-report)

• Relaxing the Order of Floating-Point Operations (-fp-relaxed)

• Reducing Floating-Point Rounding Operations (-fpc)

• Optimizing Floating-Point Operations on page 99

9.2. Board Variant Selection Considerations

Target a board variant in your Custom Platform that provides only the external
connectivity resources you require.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/displaying-the-estimated-resource-usage.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/
https://www.intel.com/content/www/us/en/docs/programmable/683846/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

For example, if your kernel requires one external memory bank, target a board variant
that only supports a single external memory bank. Targeting a board with multiple
external memory banks increases the area usage of your kernel unnecessarily.

If your Custom Platform does not provide a board variant that meets your needs,
consider creating a board variant. Consult the Intel FPGA SDK for OpenCL Custom
Platform Toolkit User Guide for more information.

Related Information

Intel FPGA SDK for OpenCL Pro Edition Custom Platform Toolkit User Guide

9.3. Memory Access Considerations

Intel recommends kernel programming strategies that can improve memory access
efficiency and reduce area usage of your OpenCL kernel.

1. Minimize the number of access points to external memory.

If possible, structure your kernel such that it reads its input from one location,
processes the data internally, and then writes the output to another location.

2. Instead of relying on local or global memory accesses, structure your kernel as a
single work-item with shift register inference whenever possible.

3. Instead of creating a kernel that writes data to external memory and a kernel that
reads data from external memory, implement the Intel FPGA SDK for OpenCL
channels extension between the kernels for direct data transfer.

4. If your OpenCL application includes many separate constant data accesses,
declare the corresponding pointers using __constant instead of __global
const. Declaration using __global const creates a private cache for each load
or store operation. However, declaration using __constant creates a single
constant cache on the chip only.

Caution: If your kernel targets a Cyclone® V device (for example, Cyclone V
SoC), declaring __constant pointer kernel arguments might degrade
FPGA performance.

5. If your kernel passes a small number of constant arguments, pass them as values
instead of pointers to global memory.

For example, instead of passing __constant int * coef and then
dereferencing coef with index 0 to 10, pass coef as a value (int16 coef). If
coef was the only __constant pointer argument, passing it as a value
eliminates the constant cache and the corresponding load and store operations
completely.

6. Conditionally shifting large shift registers inside pipelined loops leads to the
creation of inefficient hardware. For example, the following kernel consumes more
resources when the if (K > 5) condition is present:

#define SHIFT_REG_LEN 1024
__kernel void bad_shift_reg (__global int * restrict src,
 __global int * restrict dst,
 int K)
{
 float shift_reg[SHIFT_REG_LEN];
 int sum = 0;

 for (unsigned i = 0; i < K; i++)

9. Strategies for Optimizing FPGA Area Usage

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

163

https://www.intel.com/content/www/us/en/docs/programmable/683085/current/pro-edition-custom-platform-toolkit-42074.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 {
 sum += shift_reg[0];
 shift_reg[SHIFT_REG_LEN-1] = src[i];

 // This condition will cause sever area bloat.
 if (K > 5)
 {
 #pragma unroll
 for (int m = 0; m < SHIFT_REG_LEN-1 ; m++)
 {
 shift_reg[m] = shift_reg[m + 1];
 }
 }
 dst[i] = sum;
 }
}

Attention: Conditionally accessing a shift register does not degrade hardware
efficiency. If it is necessary to implement conditional shifting of a large
shift register in your kernel, consider modifying your code so that it
uses local memory.

9.4. Arithmetic Operation Considerations

Select the appropriate arithmetic operation for your OpenCL application to avoid
excessive FPGA area usage.

1. Introduce floating-point arithmetic operations only when necessary.

2. The Intel FPGA SDK for OpenCL Offline Compiler defaults floating-point constants
to double data type. Add an f designation to the constant to make it a single
precision floating-point operation.

For example, the arithmetic operation sin(1.0) represents a double precision
floating-point sine function. The arithmetic operation sin(1.0f) represents a
single precision floating-point sine function.

3. If you do not require full precision result for a complex function, compute simpler
arithmetic operations to approximate the result. Consider the following example
scenarios:

a. Instead of computing the function pow(x,n) where n is a small value,
approximate the result by performing repeated squaring operations because
they require much less hardware resources and area.

b. Ensure you are aware of the original and approximated area usages because
in some cases, computing a result via approximation might result in excess
area usage. For example, the sqrt function is not resource-intensive. Other
than a rough approximation, replacing the sqrt function with arithmetic
operations that the host has to compute at runtime might result in larger area
usage.

c. If you work with a small set of input values, consider using a LUT instead.

4. If your kernel performs a complex arithmetic operation with a constant that the
offline compiler computes at compilation time (for example, log(PI/2.0)),
perform the arithmetic operation on the host instead and pass the result as an
argument to the kernel at runtime.

9. Strategies for Optimizing FPGA Area Usage

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9.5. Data Type Selection Considerations

Select the appropriate data type to optimize the FPGA area usage by your OpenCL
application.

1. Select the most appropriate data type for your application.

For example, do not define your variable as float if the data type short is
sufficient.

2. Ensure that both sides of an arithmetic expression belong to the same data type.

Consider an example where one side of an arithmetic expression is a floating-point
value and the other side is an integer. The mismatched data types cause the Intel
FPGA SDK for OpenCL Offline Compiler to create implicit conversion operators,
which can become expensive if they are present in large numbers.

3. Take advantage of padding if it exists in your data structures.

For example, if you only need float3 data type, which has the same size as
float4, you may change the data type to float4 to make use of the extra
dimension to carry an unrelated value.

9. Strategies for Optimizing FPGA Area Usage

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10. Strategies for Optimizing Intel Stratix 10 OpenCL
Designs

This chapter of the Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide
discusses certain Intel-recommended optimization practices that you can apply to your
Intel Stratix 10 OpenCL designs to use the optimization capabilities of the Intel FPGA
SDK for OpenCL Offline Compiler to achieve best performance results.

Intel assumes that you are familiar with the information presented in the Intel FPGA
SDK for OpenCL Pro Edition Best Practices Guide and know how to apply the general
optimization strategies described in the document.

Reducing Channel Overhead on page 166

Optimizing Loop Control on page 169

Simplifying Memory Access to Local Memories on page 172

On-Chip Storage of Reused Data on page 173

Optimizing Data Path Control on page 174

Creating RTL Modules on page 177

10.1. Reducing Channel Overhead

Compared with earlier Intel FPGAs, channels in the Intel Stratix 10 FPGA have a
higher resource overhead. This increase in resource overhead is more significant in
blocking channels. Intel recommends that you reduce the number and type of
channels in your design whenever possible.

The following topics outline strategies you can implement to reduce channel overhead.

Reducing the Number of Kernels on page 166

Using a Single Kernel to Describe Systolic Arrays on page 167

Using Non-Blocking Channels on page 168

10.1.1. Reducing the Number of Kernels

Instead of partitioning your design across multiple kernels, consider consolidating the
design into fewer kernels. For Intel Stratix 10 designs, Intel recommends that you
only use separate kernels for truly asynchronous execution.

The following example shows a producer kernel and a consumer kernel
communicating via channels:

kernel producer(unsigned N) {
 int result;
 for (unsigned int i = 0; i < N; i++) {
 write_channel_intel(Produce(i));

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

 }
}

kernel consumer(unsigned N) {
 for (unsigned int i = 0; i < N; i++) {
 Consume(i, read_channel_intel());
 }
}

The optimized code below merges the two kernels in the example above into a single
kernel, which uses the computation results directly without channel accesses:

kernel fused(unsigned N) {
 for (unsigned int i = 0; i < N; i++) {
 Consume(i, Produce(i));
 }
}

10.1.2. Using a Single Kernel to Describe Systolic Arrays

For an Intel Stratix 10 OpenCL design, Intel recommends that you describe a systolic
array as a single kernel, using a function for the processing element (PE), and a fully-
unrolled loop or nested loop to represent the array.

Unoptimized multi-kernel systolic array pseudocode:

// data distribution network over an array of channels

channel int c[ROWS][COLS];
channel int d[ROWS][COLS];

attribute((num_compute_units(ROWS,COLS))
kernel void PE() {
 // get data values from my neighbors
 while(1){
 x = read_channel_intel(c[ROWS-1][COLS]);
 y = read_channel_inel(d[ROWS][COLS-1]);

 // some code that uses x and y
 ...
 // send the same data values to the next neighbors
 write_channel_intel(c[ROWS][COLS], x);
 write_channel_intel(d[ROWS][COLS], y);
 }
}

Optimized single-kernel pseudocode:

kernel void allPEs() {
 while(1){
 int c[ROWS], d[COLS];

 #pragma unroll
 for (int i = 0; i < ROWS; i++)
 #pragma unroll
 for (int j = 0; j < COLS; j++) {
 PE(c[i], d[j]);
 }
 }
 }
}

Note: Instead of a kernel, the PE body becomes the function call PE(). Unrolling the loops
results in an array of PEs, each of which uses a portion of the FPGA in a 2D array.

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Depending on the size of the array, it can be challenging for the Intel FPGA SDK for
OpenCL Offline Compiler to generate hardware that distributes the same values c and
d to all PEs on a row or column of the array within a single clock cycle. Doing so might
cause fMAX to degrade. To remedy this problem, consider using the __fpga_reg()
function to instruct the offline compiler to insert registers on c and d with every new
PE. Intel recommends that you only use the __fpga_reg() function when you know
that the PEs are spatially separate from one another on the FPGA.

Note: The __fpga_reg() built-in function is an advanced feature. The offline compiler does
not provide guidance on where you should insert the __fpga_reg() function calls. To
help determine whether it is appropriate to insert the __fpga_reg() function call,
you can experimentally quantify the impact additional registers might have on fMAX,
and inspect the Intel Quartus Prime compilation reports.

Optimized pseudocode with the __fpga_reg() function:

kernel void allPEs() {
 int c[ROWS], d[COLS];

 while(1){
 #pragma unroll
 for (int i = 0; i < ROWS; i++)
 #pragma unroll
 for (int j = 0; j < COLS; j++) {
 // compute and store outputs
 PE(c[i], d[j]);
 c[i] = __fpga_reg(c[i]);
 d[j] = __fpga_reg(d[j]);
 }
 }
 }
}

After the offline compiler unrolls the loop, there is one more register before every PE
on both c and d, allowing the Intel Quartus Prime Pro Edition software to place the
PEs apart. You may add more than one register by inserting multiple __fpga_reg()
calls in your code. For example, the call __fpga_reg(__fpga_reg(x)) adds two
registers on the data path. However, having excessive __fpga_reg() calls in your
kernel increases the design area, and the congestion might result in fMAX degradation.

Related Information

Intra-Kernel Registered Assignment Built-In Function

10.1.3. Using Non-Blocking Channels

If you must implement channels in your Intel Stratix 10 OpenCL designs, consider
using non-blocking channels. This may reduce area overhead in some cases.

The example code below has a blocking channel read:

while (cond) {
 val = read_channel_intel (my_ch);
 <do_compute (val)>
}

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

168

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/intra-kernel-registered-assignment-built.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To switch to a non-blocking channel read that is functionally equivalent to the blocking
channel read, modify the code in the following manner:

bool have_data = true;
while (cond) {
 val = read_channel_nb_intel (my_ch, &have_data);
 if (have_data) <do_compute (val)>
}

For this example, the downside of changing from a blocking channel read to a non-
blocking channel read is that the loop control logic becomes more complex. If you
transform multiple channel accesses this way, the loop control logic might limit your
performance or actually increase area overhead.

10.2. Optimizing Loop Control

Intel Stratix 10 OpenCL designs leverage the the FPGA's Hyperflex™ architecture to
achieve high performance. Because the Hyperflex architecture allows OpenCL designs
to run faster, it becomes more critical to optimize loop structures in Intel Stratix 10
OpenCL designs; otherwise, they can cause notable performance limitations.

To achieve high performance, Intel recommends achieving a loop initiation interval (II)
of 1. An II value of 1 indicates that a loop is able to start a new iteration of a loop data
path every clock cycle. Doing so helps your design consume the available FPGA
resources efficiently.

Intel has established a new loop control scheme specifically for the Intel Stratix 10
architecture.

Applying Loop Control Optimization in Intel Stratix 10 OpenCL Designs

Leveraging the Intel Stratix 10 Hyperflex architecture, you can now create deeply
pipelined loops in your design to achieve higher fMAX. Because the offline compiler
might not be able to calculate the exit condition of such a complex loop structure in a
single clock cycle, the offline compiler now defers the complete calculation of the exit
condition. The compiler decouples the calculation from the loop body and splits the
calculation across multiple clock cycles. Doing so allows loop iterations to launch each
clock cycle before the compiler finishes calculating the exit condition; however, it takes
a few clock cycles to flush the loop after the loop exit condition is signaled.

Refer to the Loop analysis report in the High Level Design Report (report.html) to
find out to which loops the offline compiler has applied the new loop optimization
strategy.

Effects of the new loop control optimization strategy:

1. Allows iterations of the current loop launch much faster.

2. Subsequent invocations of the loop starts after the current invocation flushes all
the data.

Note: A loop iteration is one execution of the loop body. A loop invocation is one execution of
an entire loop, from the initial value of the loop counter until the exit condition
becomes TRUE.

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following code example illustrates the termination overhead associated with a
nested loop:

kernel loop_overhead(unsigned N) {
 for (unsigned int i = 0; i < N; i++) {
 for (unsigned int j = 0; j < N; j++) {
 //do work
 //total iterations: i * (j + s)
 }
 }
}

The II value of this loop is 1; however, the number of clock cycles it takes to issue all
the loop iterations in the nest is N × (N+s), where s is number of cycles it takes to
flush the loop before the launch of the next few iterations. The loop overhead s is
small; it does not have a notable effect on the design unless the design has very few
iterations in the inner loop.

Types of Loops that Benefit from Loop Control Optimization

Most loops, even those with loop control that is deeply pipelined and with complex exit
conditions, are able to achieve an II value of 1. This optimization strategy is primarily
beneficial for high throughput designs with loops that have many iterations. The fMAX
increase in these designs adequately compensates for the comparatively small
overhead on termination.

Note: The extent to which loop control is pipelined does not affect the loop's II value.

There are some loops to which the loop optimization strategy is not applicable:

• Loops in an NDRange kernel

Because the offline compiler must be able to pipeline the loop, the loop must be
part of a single work-item kernel.

• Loops with exit conditions that depend on instructions that can stall or have side
effects outside the loop

The following are examples of loops that use the new loop control scheme versus
those that do not:

Example 1: Loop can achieve optimal performance on Intel Stratix 10

kernel void good_loop(global int * restrict A,
 global int * restrict result,
 unsigned N) {

 unsigned int sum = 0;

 for (unsigned int i = 0; i < N; i++) {
 sum += A[i];
 }
 *result = sum;
}

Example 2: Loop can achieve optimal performance on Intel Stratix 10

In this example, the channel write has side effects outside the loop; however, the exit
condition does not depend on the channel write.

channel unsigned int c0;

kernel void producer() {

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 for (unsigned int i = 0; i < 10; i++) {
 write_channel_intel(c0, i);
 }
}

Example 3: Loop cannot fully benefit from the Intel Stratix 10 loop control scheme
because the exit condition depends on the channel read (read_channel_intel) that
might have side effects outside the loop. As a result, the computation for each
iteration cannot proceed until the compiler determines the exit condition, otherwise
the compiler does consume additional data from the channel.

kernel void consumer (global int * restrict A,
 global int * restrict result,
 unsigned N) {
 unsigned int sum = 0;
 for (unsigned int i = 0;
 i < N && read_channel_intel(c0) != 5; i++) {
 sum += A[i];
 }
 *result = sum;
}

If the offline compiler does not implement the new loop optimization, it also disables
other fMAX optimizations.

Warning: Disabling these optimizations might reduce the amount of logic usage at the expense
of fMAX. Check the offline compiler's HTML reports to verify the outcome of the
compiler optimizations.

Related Information

Reviewing Your Kernel's report.html File on page 15

10.2.1. Simplifying Loop-Carried Dependencies in Intel Stratix 10 OpenCL
Designs

To ensure that your Intel Stratix 10 OpenCL design achieves optimal performance,
ensure that loop-carried computation is as simple as possible so that the Intel FPGA
SDK for OpenCL Offline Compiler can compute in one clock cycle.

The offline compiler cannot pipeline computations used for loop-carried dependencies.
Loops that contain many complex computations limit the amount of retiming
optimizations that the compiler can perform because the compiler cannot make any
functional changes to the loop path. Even if II=1, the HTML report identifies the fMAX
bottleneck. Use this information in conjunction with the information presented in the
Loop Analysis report pane to assess the most critical paths in your design.

If a loop-carried dependency contains logic that the offline compiler cannot compute in
one clock cycle, one mitigation approach is to lengthen the dependency distance. The
dependency distance is the number of loop iterations that occur from when the
compiler reads the value to when the next value becomes available. The Loop analysis
report within the High Level Design Report identifies the most complex loop
dependency.

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Automated Loop-Carried Dependency Optimization

For Intel Stratix 10 designs, the Intel FPGA SDK for OpenCL Offline Compiler attempts
to automate the incrementation of a value modulo N (mod N) on every iteration of a
loop.

You can apply this optimization manually for any operation that is associative and
communicative. If you refactor the code this way, the compiler can spread the
computation across two or more loop-carried variables, and it can recombine the
computation when the value is needed in a non-loop-carried computation. For more
information, refer to Safari, Nima et al. "Methods for Implementation of Feedback
Loops in High Speed FPGA Applications". 24th International Conference on Field
Programmable Logic and Applications (FPL) (2014) doi:10.1109/FPL.2014.6927434.

Intel recommends this optimization for operations that are on your design's critical
path. Consider the following example:

int i = 0;
int N = 256;
while (!done) {
 i++;
 if (i == N) i = 0;
 <use i for some computation…>
}

On each loop iteration, the offline compiler must increment a value, compare it to a
constant, and then reset the value if necessary. To optimize this code, the compiler
effectively breaks down the expression and spreads the computation across two clock
cycles to increase the dependence distance. The side effect of this optimization is a
small increase in logic usage.

There are scenarios in which the offline compiler might not optimize the example
code:

• If the initial value of i is non-zero, and the compiler cannot determine that the
initial value is between 0 and N, the compiler cannot guarantee that the forms
above are functionally equivalent.

• If any condition causes i to be modified or reset to 0, the offline compiler does
not apply the optimization.

Related Information

Safari, Nima et al. "Methods for Implementation of Feedback Loops in High Speed
FPGA Applications"

10.3. Simplifying Memory Access to Local Memories

The Intel Stratix 10 FPGA hardware has two ports per M20K memory. For other Intel
FPGA device families, the Intel FPGA SDK for OpenCL Offline Compiler allows the
Memory System Clock to run at 2x the main clock frequency, effectively providing four
ports per M20K memory. For more information, refer to Double Pumping on page 60.
However, for Intel Stratix 10 FPGAs, the offline compiler is currently discouraged from
inferring a 2x Memory System Clock because transferring data between the 2x clock
domain and the main clock at high speed generally leads to significant fMAX
degradation. You can still force double pumping for a given Memory System by
applying the memory attribute __attribute__((doublepump)).

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

172

http://ieeexplore.ieee.org/document/6927434/
http://ieeexplore.ieee.org/document/6927434/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Due to the potential fMAX implications of double pumping on Intel Stratix 10, Intel
recommends limiting the number of concurrent stores.

Multiple concurrent stores often require more than two ports to implement. Multiple
concurrent stores also cause the compiler to create stallable memories where memory
accesses must be arbitrated on every clock cycle. To determine if a memory is
arbitrated, examine the load and store units in the system or memory viewer of the
High Level Design Report. In the viewer, load and store units that are highlighted red
are stallable memories. The report presents this information when you hover over
each highlighted unit.

Related Information

Strategies for Improving Memory Access Efficiency on page 145

10.4. On-Chip Storage of Reused Data

For Intel Stratix 10 designs, the presence of cached LSUs prevent certain
optimizations. Intel recommends that you avoid inferring caching LSUs.

The unoptimized code below creates a cached burst-coalesced LSU that consumes
more resources and disables other optimizations:

kernel void cached (global int * restrict in,
 global int * restrict out) {
 int i = get_global_id(0);
 int idx = out[i];
 int cached_value = in[idx]; // Burst-coalesced cached LSU
 out[i] = cached_value;
}

To prevent the caching, mark the memory pointer as volatile, as shown in the
optimized code below:

kernel void not_cached (global volatile int * restrict in,
 global int * restrict out) {
 int i = get_global_id(0);
 int idx = out[i];
 int not_cached_value = in[idx];
 out[i] = not_cached_value;
}

For more information about optimizing load-store units, refer to the Load-Store Units
section.

Intel also recommends that you use on-chip storage to achieve optimal results. Note
that compared to non-Intel Stratix 10 devices,Intel Stratix 10 has a larger M20K to
ALM ratio, allowing you to create larger local memory systems.

The unoptimized code below has a function that receives a pointer from the array in
global memory. In this case, the offline compiler modifies the array and then stores it
back to memory. Then, in a subsequent iteration of the outer loop, the array is reused.

void cached_array(int N, int M, int BUF_SIZE,
 global float2 * global_buf)
{
 for (uint i = 0; i< N; i++) {
 float2 data_array[BUF_SIZE];
 for (uint j= 0; j < M; j++) {

 data_array[i] = global_buf [j]; //Load value

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ... //do work to modify data_array

 global_buf[j] = data_array[i];
 }
 }
}

To prevent unnecessary global memory accesses, define a private array in the kernel
to declare the array on chip. The function accesses the private array instead of the one
declared on chip. As a result, the array receives on-chip local memory storage.
Accessing this on-chip local memory does not require accesses to global memory.

Optimized code:

void local_array(int N, int M, int BUF_SIZE,
 global float2 * global_buf)
{
 float2 local_buf[BUF_SIZE];
 populate_buf(local_buf, global_buf);

 for (uint i = 0; i< N; i++) {
 float2 data_array[BUF_SIZE];
 for (uint j= 0; j < M; j++) {

 data_array[i] = local_buf[j];//Load value

 ... //do work to modify data_array

 local_buf[j] = data_array[i];

 }
 }
}

Related Information

Load-Store Units on page 85

10.5. Optimizing Data Path Control

To best use the Intel Stratix 10 design-specific new data path optimizations, modify
your code to remove constructs or features that might prevent the implementation of
these optimizations. If there are such constructs or features in your design, the Intel
FPGA SDK for OpenCL Offline Compiler will revert to the legacy optimizations, which
might result in a lower fMAX. For example, if the offline compiler must instantiate
cached LSUs for the memory access pattern, it will not enable the new optimizations.

The following constructs or features prevent Intel Stratix 10 data path optimization:

• NDRange designs with loops

• Stallable LSUs with the exception of burst-coalesced LSUs

Burst-coalesced LSUs are the default type of LSUs that the offline compiler
instantiates. Example of a burst coalesced LSU instantiation:

kernel void burst_coalesced (global int * restrict in,
 global int * restrict out){
 int i = get_global_id(0);

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 int value = in[i/2]; //Burst-coalesced LSU
 out[i] = value;
}

You can view the LSU type of various instructions in the High Level Design Report
by hovering over the load or store operation in the System Viewer. Refer to the
Load-Store Units section for more information about the types of LSUs and how
you can influence the compiler on which type of LSUs to instantiate.

• Channels with multiple call sites

• Stallable RTL library calls

Refer to the Create RTL Modules section for more information.

• Reconvergent control flow in the optimized control flow graph, with the exception
of loops that use the new control optimization

The following pseudocode example of a simple reconvergent control flow shows
that the flow of the code goes in one of two paths. The offline compiler
implements different control logic for each path. It also implements logic to
reconverge the control flow after the two paths are completed.

while (some_some condition){
 if (some_other_condition){
 for(...){ }
 } else{
 for(...){ }
 }
}

• Loops that do not use the new loop control scheme

Refer to the Loop Control Optimization section for more information about what
loops are affected by this restriction.

• Basic block structures with the exception of the following:

— Basic block with only one predecessor, as shown in Basic Block Structure with
One Predecessor

— Basic block with exactly two predecessors, where one predecessor is the back-
edge of a loop, as shown in Basic Block Structure with Two Predecessors

Note: The majority of optimized designs belong to one of the two supported basic
block structures. You may review images of these basic blocks in the
System Viewer of the High Level Design Report.

The following code example generates the two types of supported basic block
structures:

__attribute__((max_global_work_dim(0)))
void kernel basic_block(global unsigned int *myvar,
 unsigned int insize)
{
 for(int i=0; i < insize; i++){
 myvar[i] += insize;
 }
}

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 88. Basic Block Structure with One Predecessor
The basic block in question refers to gzip.B2, which is outlined in red. Its predecessor is the previous basic
block, gzip.B1.

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 89. Basic Block Structure with Two Predecessors
The basic block in question is gzip.B1, which is outlined in red. This block refers to the body of the loop; its
predecessors are itself and the previous basic block, gzip.B0. The purple line in gzip.B1 denotes the back end
of the loop.

Related Information

• Optimizing Loop Control on page 169

• Creating RTL Modules on page 177

• Load-Store Units on page 85

10.6. Creating RTL Modules

You may embed RTL modules in an OpenCL kernel. For more information about how to
integrate an RTL module into your OpenCL design, refer to the Understanding RTL
Modules and the OpenCL Pipeline section. To create an Intel Stratix 10 OpenCL-
compatible RTL module, you must understand the Intel Stratix 10-specific changes to
the reset signal, and know how to write compatibly pipelined interfaces to the RTL
module.

For more information about Intel Stratix 10-specific RTL design best practices, refer to
the Intel Stratix 10 High-Performance Design Handbook.

There are stall-free and stallable RTL modules. A stall-free RTL module is a fixed-
latency module for which the offline compiler can optimize away stall logic. Refer to
the Stall-Free RTL section in the Intel FPGA SDK for OpenCL Pro Edition Programming
Guide for more information.

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A stallable RTL module has variable latency and relies on backpressured input and
output interfaces to function correctly. Implementing stallable interfaces in Intel
Stratix 10 designs consumes a lot of FPGA resources because of the handshake logic,
which limits retiming. Using stallable interfaces in Intel Stratix 10 designs also
disables the data path control optimization scheme.

Intel strongly recommends that you use stall-free RTL modules because the offline
compiler can incorporate them into your Intel Stratix 10 designs more effectively.

Note: There are important differences between the reset requirements for stall-free and
stallable RTL modules. These requirements are necessary for the functional
correctness of the RTL modules. For more information, refer to Intel Stratix 10 Design-
Specific Reset Requirements for Stall-Free and Stallable RTL Modules in the Intel FPGA
SDK for OpenCL Pro Edition Programming Guide.

Related Information

• Understanding RTL Modules and the OpenCL Pipeline

• Intel Stratix 10 High-Performance Design Handbook

• Stall-Free RTL

• Intel Stratix 10 Design-Specific Reset Requirements for Stall-Free and Stallable
RTL Modules

10.6.1. Reset Recommendations

Intel provides recommendations on how to handle resets in your Intel Stratix 10
OpenCL designs. The Intel FPGA SDK for OpenCL Offline Compiler applies these
recommendations automatically. If you are developing an RTL library, you should
implement these guidelines for best performance.

In traditional FPGA RTL for non-Intel Stratix 10 devices, it is common practice to reset
every register indiscriminately for easy implementation without negative effects on
performance. However, to improve the performance of your Intel Stratix 10 design,
you must minimize the number of resets.

Note: If a register is not reset, the reset fanout signal is reduced by one.

Avoid unnecessary resets in your Intel Stratix 10 design for the following reasons:

• The resulting high-fanout signal prevents the Intel Quartus Prime Pro Edition
software's retimer to find a satisfactory solution.

For more in-depth explanation, refer to the Avoid Broadcast Signals section in the
Intel Stratix 10 High-Performance Design Handbook. Note that the term
"broadcast signals" refers to high-fanout signals.

• In some situations, simply having a reset on a register, regardless of whether it is
a high-fanout reset signal, is enough to degrade the performance of your Intel
Stratix 10 design.

For more in-depth explanation, refer to the Synchronous Resets and Limitations
section in the Intel Stratix 10 High-Performance Design Handbook.

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

178

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/understanding-rtl-modules-and-the-opencl.html
https://www.intel.com/content/www/us/en/docs/programmable/683353/current/fpga-architecture-introduction.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/stall-free-rtl.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/design-specific-reset-requirements-for.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/design-specific-reset-requirements-for.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel recommends the following design guidelines for resets:

• To improve Intel Stratix 10 design performance, do not reset registers that do not
hold internal states to reduce reset fanout.

• The reset signal is guaranteed to remain asserted for at least 50 clock cycles. Use
this guaranteed assertion by "flushing" chains of registers that have internal
states, which further reduces the reset fanout.

• You have the option to pipeline the reset signal inside the RTL module for fanout
management, to a depth of no more than 15 pipeline registers for stall-free RTL
modules, or no more than 25 pipeline registers for stallable RTL modules. If the
RTL module is sufficiently large, pipelining the reset signal might improve design
performance.

Related Information

• Avoid Broadcast Signals

• Synchronous Resets and Limitations

10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

179

https://www.intel.com/content/www/us/en/docs/programmable/683353/current/avoid-broadcast-signals.html
https://www.intel.com/content/www/us/en/docs/programmable/683353/current/synchronous-resets-and-limitations.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11. Strategies for Improving Performance in Your Host
Application

Multi-Threaded Host Application on page 180

Utilizing Hardware Kernel Invocation Queue on page 181

11.1. Multi-Threaded Host Application

When there are parallel, independent data paths and the host must process the data
between kernel executions, consider using a multi-threaded host application.

The figure below illustrates how a single-threaded host application might process
parallel, independent data paths between kernel executions:

Figure 90. Kernel Execution by a Single-Threaded Host Application

Kernel 1

Kernel 4Kernel 3

Poll for
completion

Poll for
completion

Host
processing

Kernel 2
Host

processing
Host

processing

Host
processing

Data
set 1

Data
set 2

Main Program

The OpenCL runtime is thread safe and supports multithreaded applications. Thus, you
can perform work tasks on the host in parallel threads while still allowing those
threads to access the OpenCL APIs in a thread-safe way.

However, thread safety is enforced at the OpenCL API boundary by synchronizing
threads immediately after any OpenCL host API is called, which means, only one
thread is ever active in the runtime while the other threads wait. As such, if one
thread calls clFlinish on a queue full of work, another thread calling
clSetKernelArg may have to wait for all of that work to complete before executing.

If possible, process data on CPU on multiple-threads, and use single dedicated thread
to interact with the OpenCL API.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The figure below illustrates how a multi-threaded host application processes parallel,
independent data paths between kernel executions:

Figure 91. Kernel Execution by a Multi-Threaded Host Application in a Thread-Safe
Runtime Environment

Main
Program

Data
set 1

Kernel 1
Host

processing Kernel 2
Host

processing

Data
set 1

Kernel 3
Host

processing Kernel 4
Host

processing

Thread 1

Thread 2

Related Information

Multiple Host Threads

11.2. Utilizing Hardware Kernel Invocation Queue

OpenCL kernels are built with invocation queue to enable immediate launch of next
invocation.

Tip: If you are looking for Intel oneAPI DPC++/C++ Compiler-specific details, refer to
Utilizing Hardware Kernel Invocation Queue topic in the FPGA Optimization Guide for
Intel oneAPI Toolkits.

As illustrated in the following figure, when the invocation queue is used, system and
OpenCL runtime environment overheads (from responding to the finish and sending in
the next set of invocation arguments) are overlapped with the kernel executions. This
allows kernels to execute continuously, maximizing the system level throughput.

Figure 92. Kernel Execution With and Without Invocation Queue

invocation

Time

Enqueue 1
Enqueue 2

Enqueue 1
Enqueue 2

invocation

invocation
invocation execution finish

Not Using Invocation
Queue

Using Invocation
Queue

execution finish
execution finish

execution finish

Kernel invocations are queued in hardware when another enqueued kernel with the
same kernel function name and program is already running on the device, and the
following are true:

• OpenCL kernel is not compiled with hardware kernel invocation buffer disabled (-
no-hardware-kernel-invocation-buffer).

• OpenCL kernel is not compiled with performance counters (-profile)

• Enqueued OpenCL kernel does not have printf.

11. Strategies for Improving Performance in Your Host Application

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

181

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/multiple-host-threads.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/host/utilizing-hardware-kernel-invocation-queue.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• All event objects queued earlier in the command queue have execution status
equal to CL_COMPLETE.

If the status is CL_SUBMITTED or CL_RUNNING, then that status is for the
enqueue kernel with the same kernel function name in the same program.

• All event objects in the event wait list have execution status equal to
CL_COMPLETE.

If the status is CL_SUBMITTED or CL_RUNNING, then that status is for the
enqueue kernel on the same device with the same kernel function name in the
same program.

• If the OpenCL kernel uses heterogeneous memory, kernel currently running on the
device and the one getting enqueued did not set the same memory object on
different memory types.

Consider the following two example host code snippets where the compiler can queue
kernel invocation on hardware kernel invocation queue:

Example 1

int main()
{ …
 clEnqueueNDRangeKernel(queue, kernel, …, NULL);
 clEnqueueNDRangeKernel(queue, kernel, …, NULL);
 …
}

As soon as the first enqueue kernel is running, the compiler can queue the second
enqueue kernel on hardware.

Example 2

int main()
{ …
 clEnqueueNDRangeKernel(queue0, kernel0, …, NULL);
 clEnqueueNDRangeKernel(queue1, kernel1, …, NULL);
 clEnqueueNDRangeKernel(queue0, kernel0, …, NULL);
 clEnqueueNDRangeKernel(queue1, kernel1, …, NULL);
 …
}

As soon as the first enqueue of kernel0 is running, the compiler can queue the
second enqueue of kernel0 on the hardware irrespective of the kernel1 status.
Similarly, as soon as the first enqueue of kernel1 is running, the compiler can queue
the second enqueue of kernel1 on the hardware irrespective of the kernel0 status.

Now, consider the following two examples where the compiler cannot queue kernel
invocation on hardware:

Example 1

int main()
{ …
 clEnqueueNDRangeKernel(queue, kernel0, …, NULL);
 clEnqueueNDRangeKernel(queue, kernel1, …, NULL);
 clEnqueueNDRangeKernel(queue, kernel0, …, NULL);
 …
}

11. Strategies for Improving Performance in Your Host Application

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Since the queue is in-order, enqueue kernel1 prevents the second enqueue of
kernel0 from being queued on the hardware invocation queue.

Example 2

int main()
{ …
 clEnqueueNDRangeKernel(queue0, kernel0, …, NULL);
 clEnqueueNDRangeKernel(queue1, kernel1, …, &event);
 clFlush(queue1);
 clEnqueueNDRangeKernel(queue0, kernel0, …, 1, &event, NULL);
 …
}

Since the second enqueue of kernel0 is waiting on enqueue of kernel1 to complete,
it only gets queued on the hardware kernel invocation queue if kernel1 finishes
execution before first enqueue of kernel0 finishes.

Attention: If the difference in clGetEventProfilingInfo() time between
CL_PROFILING_COMMAND_END and CL_PROFILING_COMMAND_START flags is used to
calculate execution time of enqueue kernel commands, it is possible that the execution
time is zero if it is queued on the invocation queue. Use the following formula to
calculate average execution time of the kernel across multiple enqueues instead:

tavg =
end n - start 1

n
OR tavg =

∑ i=1 end i - start i
n

n

Related Information

• Disabling Hardware Kernel Invocation Queue (-no-hardware-kernel-invocation-
queue)

• Instrumenting the Kernel Pipeline with Performance Counters (-profile) on page
109

11.2.1. Double Buffered Host Application Utilizing Kernel Invocation
Queue

Double buffering in OpenCL host application allows OpenCL runtime environment to
coalesce memory transfers and kernel execution.

To utilize hardware kernel invocation queue while double buffering, write your host
code as shown in the following code snippet:

int main()
{ …
 cl_event dependencies[2];
 for (int i=0; i<MAX_ITERATIONS; i++) {
 if (i < 2) {
 clEnqueueWriteBuffer(writeQ, inputBufferD[i%2], CL_FALSE, …,
inputBufferH[i], 0, NULL, &writeEvent[i]);
 clFlush(writeQ);
 clSetKernelArg(kernel, 0, sizeof(cl_mem *), &inputBufferD[i%2]);
 clSetKernelArg(kernel, 1, sizeof(cl_mem *), &outputBufferD[i%2]);
 clEnqueueNDRangeKernel(kernelQ, kernel, …, 1, &writeEvent[i],
&kernelEvent[i]);
 clFlush(kernelQ);
 } else {
 clEnqueueWriteBuffer(writeQ, inputBufferD[i%2], CL_FALSE, …,

11. Strategies for Improving Performance in Your Host Application

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

183

https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-hardware-kernel-invocation.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-hardware-kernel-invocation.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

inputBufferH[i], 1, &kernelEvent[i-2], &writeEvent[i]);
 clFlush(writeQ);
 dependencies[0] = writeEvent[i];
 dependencies[1] = readEvent[i-2];
 clSetKernelArg(kernel, 0, sizeof(cl_mem *), &inputBufferD[i%2]);
 clSetKernelArg(kernel, 1, sizeof(cl_mem *), &outputBufferD[i%2]);
 clEnqueueNDRangeKernel(kernelQ, kernel, …, 2, dependencies,
&kernelEvent[i]);
 clFlush(kernelQ);
 }
 clEnqueueReadBuffer(readQ, output_device[i%2], CL_FALSE, …,
outputBufferH[i], 1, &kernelEvent[i], &readEvent[i]);
 clFlush(readQ);
 }
 …
}

The following diagram helps you in visualizing the event dependency:

Note: Arrows represent the source of event in the event wait list.

Figure 93. Event Dependency Graph

writeEvent[0] writeEvent[1] writeEvent[2] writeEvent[3] writeEvent[4]

kernelEvent[0]

readEvent[0] readEvent[1] readEvent[2] readEvent[3] readEvent[4]

kernelEvent[1] kernelEvent[2] kernelEvent[3] kernelEvent[4]

writeQ

kernelQ

readQ

The following figure illustrates the order the commands are executed on the device
assuming kernel execution is longer than reads and writes, and the device supports
concurrent reads and writes:

Figure 94. Order of Event Execution

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

writeEvent

KernelEvent

readEvent
time

11. Strategies for Improving Performance in Your Host Application

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide Archives

For the latest and previous versions of this release notes, refer to Intel FPGA SDK for
OpenCL Pro Edition Best Practices Guide. If a software version is not listed, the guide
for the previous software version applies.

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683521/
https://www.intel.com/content/www/us/en/docs/programmable/683521/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Document Revision History for the Intel FPGA SDK for
OpenCL Pro Edition Best Practices Guide

Document Version Intel Quartus
Prime Version

Changes

2022.12.19 22.4 • Maintenance release.

2022.09.26 22.3 • Maintenance release.

2022.06.21 22.2 • Maintenance release.

2022.03.28 22.1 • Maintenance release.

2021.12.13 21.4 • Maintenance release.

2021.10.04 21.3 • Maintenance release.

2021.06.21 21.2 • Removed some outdated images and improved some of the
descriptions in the Reviewing Your Kernel's report.html File chapter.

2021.03.29 21.1 • Updated the messages in Area Report Messages for Private Variable
Storage.

• Added a new section in Optimize Global Memory Accesses about how to
calculate the global memory bandwidth use.

• Added a new topic Reviewing Global Memory Information to describe
the global memory view of the System Viewer in the report.html
file.

• Updated the topic Features of the Schedule Viewer to include details
about the dependency lines.

• Changed the Graph Viewer report name to System Viewer.

2020.12.14 20.4 Maintenance release.

2020.09.28 20.3 • Minor update to Loop Fusion topic about trip count condition relaxation.
• Added a topic Viewing Throughput Bottlenecks in the Design.
• Added a new topic Loop Bottlenecks.
• Updated Accessing HLD FPGA Reports in JSON Format and High-level

Design Report Layout topics to include Bottlenecks viewer.
• Made minor update in Profiling Your Kernel to Identify Performance

Bottlenecks and Best Practices for Profiling Your Kernel.
• In Instrumenting the Kernel Pipeline with Performance Counters (-

profile), removed a bullet point about running the host application from
the local disk.

• Updated the topic title and description of Invoking the Profiler Runtime
Wrapper

• Updated the Profiling Autorun Kernels topic completely.
• Renamed the topic Intel VTune™ Profiler as Viewing Profiling Data Using

Intel VTune Profiler and made minor update to the topic description.
• In the Performance Data Types topic, updated the description, added

two new information types in the Types of Performance Data table,
removed the Types of Information of table, and added a note.

• Made minor update in the Interpreting the Profiling Information topic
description.

• Made minor update in the Stall, Occupancy, Bandwidth topic
description.

continued...

683521 | 2022.12.19

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version Intel Quartus
Prime Version

Changes

• Removed information about the Intel FPGA dynamic profiler for OpenCL
and the screenshot in High Stall Percentage topic.

• Minor update to the topic titles of No Stalls, Low Occupancy
Percentage, and Low Bandwidth and No Stalls, High Occupancy
Percentage, and Low Bandwidthand updated their images.

• In Intel FPGA Dynamic Profiler for OpenCL Limitations, removed a
limitation and added a new limitation.

• Removed the following topics:
— Intel FPGA Dynamic Profiler for OpenCL GUI
— Launching the Intel FPGA Dynamic Profiler for OpenCL GUI (report)
— Source Code Tab
— Tool Tip Options
— Kernel Execution Tab
— Autorun Captures Tab
— Activity
— Cache Hit
— Low Bandwidth Efficiency
— Autorun Profiler Data

• Added the following new topics:
— Reducing Area Resource Usage While Profiling
— Obtaining Profiling Data During Runtime
— Splitting Execution and Data Post Processing
— Temporal Performance Collection
— Channel Depths

2020.06.22 20.2 • Updated a guideline about the use of local_mem_size attribute in
Preloading Data to Local Memory.

• Added scheduler's behavior in different scenarios to Reviewing Loop
Information.

• Removed Out of Order Loop Iterations section in Nested Loops topic.
• Made minor update regarding the support for double pumping in Intel

Stratix 10 devices in Simplifying Memory Access to Local Memories

2020.04.13 20.1 • Updated the topic title and entire topic of Optimizing for Two or More
Banks of Global Memory.

• Updated the entire Reviewing Your Kernel's report.html File chapter.
• Removed the Reviewing fMAX II Information topic since Fmax II report is

deprecated. See Loop Analysis report.
• Added fmax related information to the Loop Analysis report.
• Added a new topic Performance Data Types.
• Added a new topic Intel VTune Profiler.
• Added a new topic Invoking the Profiler Runtime Wrapper to Obtain

Profiling .
• Made minor updates and reorganized the existing topics of Profiling

Your Kernel to Identify Performance Bottlenecks chapter.
• Added a new topic Loop Fusion.
• Updated the Loops in a Single Work-Item Kernel topic completely.
• Updated the Loop-Carried Dependencies that Affect the Initiation

Interval of a Loop topic completely.
• Updated the Trade-Off Between Initiation Interval and Maximum

Frequency topic completely.

continued...

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2019.09.30 19.3 • Updated the topic Load-Store Units completely.
— Removed Streaming Load-Store Units, Semi-Streaming Load-Store

Units, and Global Infrequent Load-Store Units sections.
— Changed Local-Pipelined Load-Store Units as Pipelined Load-Store

Units and added more information within this section.
— Updated the code snippet in the Cached section.
— Added new topics Controlling the Load-Store Units and When to Use

Each LSU.
• Updated the Optimizing Accesses to Local Memory by Controlling the

Memory Replication Factor topic completely and replaced the code
snippets.

• Updated the Channels topic to include more information about the
depth attribute.

• Added a new topic about Schedule Viewer.
• Minor updates in Reviewing Block Information and Reviewing Cluster

Information topics.
• Added a new topic Reviewing System Information and moved some of

the existing instructions to this page.
• Removed system view related information and images from the

Features of the Graph Viewer topic and moved it to the Reviewing
System Information topic.

• Updated images in High Level Design Report Layout and Reviewing the
Report Summary topics.

• Made minor updates in Accessing HLD FPGA Reports in JSON Format
topic.

2019.07.01 19.2 • Added the following topics from the Intel FPGA SDK for OpenCL Pro
Edition Programming Guide in the Profiling Your Kernel to Identify
Performance Bottlenecks:
— Launching the GUI (report)
— Instrumenting the Kernel Pipeline with Performance Counters (-

profile)
— Profiling Autorun Kernels

• Removed the topic HTML Report: Area Report Messages and moved its
subtopics under Reviewing Area Information on page 36.

• In Reviewing Area Information on page 36, included a note about
analyze-area from the Intel FPGA SDK for OpenCL Pro Edition
Programming Guide

• System Viewer, Block Viewer and Cluster Viewer topics merged into the
Graph Viewer report. Relevant topics and images were updated
accordingly.

• In Single Work-Item Kernel versus NDRange Kernel, accum_swg kernel
code line 6 was updated.

2019.05.08 19.1 • Updated Kernel Execution Tab since “Memory Copy (from device)” and
“Memory Copy (to device)” are no longer supported.

• Added document archives chapter.

2019.04.01 19.1 • In Nested Loops on page 70 topic, updated the code snippet and
images in the Out-of-Order Loop Iterations section.

• In Loops in a Single Work-Item Kernel on page 66 topic:
— Updated the Trade-Off Between Critical Path and Maximum

Frequency section to discuss kernel lowered_fmax.
— Added Loop Speculation section.

• Most of the topics under Reviewing Your Kernel's report.html File on
page 15chapter were updated to map the content and images to GUI
changes in the HTML report.

• Removed the topic Area Analysis by Source since this view has been
removed from the HTML report.

• Removed the topic Area Analysis

continued...

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added the following new topics:
— Reviewing fMAX II Information
— Analyzing Throughput on page 32
— Reviewing Block Information on page 22
— Reviewing Cluster Information on page 25

• Added a new chapter Strategies for Improving Performance in Your
Host Application and added the following new topics under it:
— Utilizing Hardware Kernel Invocation Queue on page 181
— Double Buffered Host Application Utilizing Kernel Invocation Queue

on page 183
• Moved Multi-Threaded Host Application on page 180 topic under

Strategies for Improving Performance in Your Host Application chapter
and made minor improvements in the description.

• Updating the code snippets, text and images in Optimizing an OpenCL
Design Example Based on Information in the HTML Report on page 40.

• Removed step 3 along with flowchart in Reviewing Loop Information on
page 33.

• Removed Loop Analysis Report of an OpenCL Design Example topics
and merged its content with Reviewing Loop Information on page 33.

• Moved Changing the Memory Access Pattern Example on page 61 and
Reducing the Area Consumed by Nested Loops Using loop_coalesce on
page 76 to HTML Report: Kernel Design Concepts section.

• Modified the topic title Verifying Information on Memory Replication and
Stalls to Using Views on page 19.

• Added a new topic Optimizing for Two or More Banks of Global Memory
on page 150 to describe how to optimize global memory.

• Removed the topic Simplifying Loop-Carried Dependency.
• Updated Kernels on page 51 topic with more information about blocks

and clusters.
• Updated Local Memory on page 54 topic completely and added more

images to explain the concept.
• Rewrote the Features of the Kernel Memory Viewer on page 26 topic

completely.

2018.09.24 18.1 • In Intel FPGA SDK for OpenCL Pro Edition, the Intel FPGA SDK for
OpenCL Offline Compiler has a new front end. For a summary of
changes introduced by this new front end, see Improved Intel FPGA
SDK for OpenCL Compiler Front End in the Intel FPGA SDK for OpenCL
Pro Edition Release Notes.

• Moved Static Memory Coalescing on page 160 from Strategies for
Improving NDRange Kernel Data Processing Efficiency on page 137 to
Strategies for Improving Memory Access Efficiency on page 145.

• Added information about the ivdep pragma safelen(N) clause to
Removing Loop-Carried Dependencies Caused by Accesses to Memory
Arrays on page 132.

• Removed image that showed comparison between parallel threads and
loop pipelining, along with explanation to Multi-Threaded Host
Application on page 180. This image and its explanation did not apply
to host applications.

2018.05.04 18.0 • Removed Intel FPGA SDK for OpenCL Standard Edition information.
• Added a new Strategies for Optimizing Intel Stratix 10 OpenCL Designs

on page 166 chapter.
• In Preloading Data to Local Memory on page 151, added information on

automatic padding of local memory elements.
• Removed the topic Resource-Driven Optimization because it described

an obsolete optimization behavior.

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

189

https://www.intel.com/content/www/us/en/docs/programmable/683177/
https://www.intel.com/content/www/us/en/docs/programmable/683177/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 21. Intel FPGA SDK for OpenCL Best Practices Guide Document Revision History

Date Version Changes

December 2017 2017.12.08 • Added the following new topics:
— Autorun Captures Tab
— Autorun Profiler Data

November 2017 2017.11.06 • Moved all topics into individual chapters.
• Changed some of the topic titles to task-based titles.
• Changed all occurrences of Fmax to fmax.
• Rebranded Dynamic Profiler to Intel FPGA Dynamic Profiler for OpenCL.
• Added a new short description to Stall, Occupancy, Bandwidth on page 115.
• Added a new image to show comparison between parallel threads and loop

pipelining, along with explanation to Multi-Threaded Host Application on page
180.

• Added an FPGA architecture along with some explanation in FPGA Overview on
page 5.

• Added OpenCL Design Components image to OpenCL Design Components.
• Added an important note to Aligning a Struct with or without Padding on page

103 about 4-byte alignment and remove information related to a struct that is
aligned and not padded.

• Added two bullet points to the last Attention section in Optimizing Accesses to
Local Memory by Controlling the Memory Replication Factor on page 157.

• Added Minimizing the Memory Dependencies for Loop Pipelining on page 159.
• Added area report hierarchy details to Reviewing Area Information on page 36.
• Added Best Practices for Channels and Pipes on page 97.
• Updated Allocating Aligned Memory on page 102.
• Added Reducing the Area Consumed by Nested Loops Using loop_coalesce on

page 76.
• Added Changing the Memory Access Pattern Example on page 61.
• Updated the image Optimization Work Flow of a Single Work-Item Kernel.
• In the following topics, implemented single dash and -option=<value>

conventions for aoc command.
— Optimization Work Flow of a Single Work-Item Kernel
— Optimizing Floating-Point Operations on page 99
— Manual Partitioning of Global Memory on page 149
— Constant Cache Memory on page 151
— Compilation Considerations on page 162
— High Stall and High Occupancy Percentages on page 118

• In Source Code Tab and Tool Top Options, updated the images to reflect Intel.
• In High Stall Percentage, added a screenshot for high stall percentage

identification along with relevant explanation.
• In Local Memory on page 54, added a sentence about the overall state of the

local memory as observed in the HTML report.
• In Load-Store Units on page 85, updated the description of semi-streaming LSU

to describe how data travels throughout the block.
• New example codes and relevant explanation added to Nested Loops on page

70.
• Updated the code fragment in Intel FPGA SDK for OpenCL Pipeline Approach on

page 8 section by removing the index keyword updated Figure 4.
• In Single Work-Item Kernel versus NDRange Kernel on page 9,

— Removed the criteria for creating single work item kernels for your design.
— Added new example codes and relevant explanation
— Removed the subtopic on Single Work-Item Execution and merged its

content with this topic.

continued...

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2017 2017.05.08 • Rebranded some functions in code examples as follows:
— Rebranded read_channel_altera to read_channel_intel.
— Rebranded write_channel_altera to write_channel_intel.
— Rebranded read_channel_nb_altera to read_channel_nb_intel.
— Rebranded write_channel_nb_altera to write_channel_nb_intel.

• Added Load-Store Units on page 85.
• Added Reviewing the Summary Report on page 16.
• Added Features of the Kernel Memory Viewer on page 26.
• Revised the Local Memory Banks section of Local Memory on page 54 to include

information about the bank_bits attribute.
• Revised Optimization Work Flow of a Single Work-Item Kernel in Addressing

Single Work-Item Kernel Dependencies Based on Optimization Report Feedback
on page 123 to reflect changes to the profiling commands.

December 2016 2016.12.02 Minor editorial modification.

October 2016 2016.10.31 • Rebranded the Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
• Rebranded the Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline

Compiler.
• In Align a Struct with or without Padding, modified code snippets to correct the

placement of attributes with respect to the struct declaration.
• Added the topic Review Your Kernel's report.html File, with subtopics describing

the HTML GUI, the various reports the GUI provides, and a walkthrough on how
to leverage the information in the HTML report to optimize an OpenCL design
example.

• Changed Review Your Kernel's Area Report to Identify Inefficiencies in Resource
Usage to HTML Report: Area Report Messages, and removed the following
subsections:
— Area Report Messages for Global Memory and Global Memory Interconnect
— Area Report Messages for Local Memory
— Area Report Messages for Channels

• Added the topic HTML Report: Kernel Design Concepts, which includes
subtopics on kernels, global memory interconnect, local memory, nested loops,
loops in single work-item kernels, and channels.

• In Interpreting the Profiling Information, reorganized the content and added
the following:
— Additional explanations on stall, occupancy, bandwidth, activity, and cache

hit.
— Suggestions on addressing unsatisfactory Profiler metrics.

• In Addressing Single Work-Item Kernel Dependencies Based On Optimization
Report Feedback, modified the figure Optimization Work Flow of a Single Work-
Item Kernel to replace area report with HTML report.

• Removed the Optimization Report section along with the associated subsections
because the information is now part of the HTML report.

• Changed Review Kernel Properties and Loop Unroll Status in the Optimization
Report to Review Kernel Properties and Loop Unroll Status in the HTML Report
because the optimization report is now part of the report.html file.

May 2016 2016.05.02 • Added the topic Removing Loop-Carried Dependencies Caused by Accesses to
Memory Arrays to introduce the ivdep pragma.

• Under Strategies for Improving Memory Access Efficiency, added the following
topics to explain how to use the numbanks and bankwidth kernel attributes to
configure the geometry of local memory system:
— Improve Kernel Performance by Banking the Local Memory
— Optimize the Geometric Configuration of Local Memory Banks Based on

Array Index
• Under Strategies for Improving Memory Access Efficiency, added the topic

Optimize Accesses to Local Memory by Controlling the Memory Replication
Factor to explain the usage of the singlepump and doublepump kernel
attributes.

continued...

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Added information on the area report messages. Refer to the Review Your
Kernel's Area Report to Identify Inefficiencies in Resource Usage section for
more information.

• Removed the Kernel-Specific Area Report section because it is replaced by the
enhanced area report. Refer to the Review Your Kernel's Area Report to Identify
Inefficiencies in Resource Usage section for more information.

• Updated the subsections under Optimization Report to include the enhanced
optimization report messages.
— Added the Optimization Report Message for Speed-Limiting Constructs

• Updated the subsections under Addressing Single Work-Item Kernel
Dependencies Based on Optimization Report Feedback to include the enhanced
optimization report messages.

• Updated the figure Optimization Work Flow for a Single Work-Item Kernel to
include steps on accessing the enhanced area report to review resource usage.

• Under Strategies for Improving NDRange Kernel Data Processing Efficiency,
added the Review Kernel Properties and Loop Unroll Status in the Optimization
Report section.

November 2015 2015.11.02 • Added the topic Multi-Threaded Host Application.
• Added Caution note regarding memory barrier in Specify a Maximum Work-

Group Size or a Required Work-Group Size.

May 2015 15.0.0 • In Memory Access Considerations, added Caution note regarding performance
degradation that might occur when declaring __constant pointer arguments in
kernels targeting Cyclone V devices.

• In Good Design Practices for Single Work-Item Kernel, removed the Initialize
Data Prior to Usage in a Loop section and added a Declare Variables in the
Deepest Scope Possible section.

• Added Removing Loop-Carried Dependency by Inferring Shift Registers. The
topic discusses how, in single work-item kernels, inferring double precision
floating-point array as a shift register can remove loop-carried dependencies.

• Added Kernel-Specific Area Reports to show examples of kernel-specific .area
files that the Altera Offline Compiler generates during compilation.

• Renamed Transfer Data Via offline compiler Channels to Transfer Data Via
offline compiler Channels or OpenCL Pipes and added the following:
— More information on how channels can help improve kernel performance.
— Information on OpenCL pipes.

• Renamed Data Type Considerations to Data Type Selection Considerations.

December 2014 14.1.0 • Reorganized the information flow in the Optimization Report Messages section
to update report messages and the layout of the optimization report.

• Included new optimization report messages detailing the reasons for
unsuccessful and suboptimal pipelined executions.

• Added the Optimization Report Messages for Simplified Analysis of a Complex
Design subsection under Optimization Report Messages to describe new report
message for simplified kernel analysis.

• Renamed Using Feedback from the Optimization Report to Address Single
Work-Item Kernels Dependencies to Addressing Single Work-Item Kernel
Dependencies Based on Optimization Report Feedback.

• Added the Transferring Loop-Carried Dependency to Local Memory subsection
under Addressing Single Work-Item Kernel Dependencies Based on
Optimization Report Feedback to describe new strategy for resolving loop-
carried dependency.

• Updated the Resource-Driven Optimization and Compilation Considerations
sections to reflect the deprecation of the -O3 and --util <N> Altera® Offline
Compiler (offline compiler) command options.

• Consolidated and simplified the Heterogeneous Memory Buffers and Host
Application Modifications for Heterogeneous Memory Accesses sections.

• Added the section Align a Struct and Remove Padding between Struct Fields.
• Removed the section Ensure 4-Byte Alignment to All Data Structures.
• Modified the figure Single Work-Item Optimization Work Flow to include

emulation and profiling.

continued...

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

June 2014 14.0.0 • Renamed document as the Intel FPGA SDK for OpenCL Best Practices Guide.
• Reorganized information flow.
• Renamed Good Design Practices to Good OpenCL Kernel Design Practices.
• Added channels information in Transfer data via offline compiler Channels.
• Added profiler information in Profile Your Kernel to Identify Performance

Bottlenecks.
• Added the section Single Work-Item Kernel Versus NDRange Kernel.
• Updated Single Work-Item Execution section.
• Removed Performance Warning Messages section.
• Renamed Single Work-Item Kernel Programming Considerations to Good

Design Practices for Single Work-Item Kernel.
• Added the section Strategies for Improving Single Work-Item Kernel

Performance.
• Renamed Optimization of Data Processing Efficiency to Strategies for Improving

NDRange Kernel Data Processing Efficiency.
• Removed Resource Sharing section.
• Renamed Floating-Point Operations to Optimize Floating-Point Operations.
• Renamed Optimization of Memory Access Efficiency to Strategies for Improving

Memory Access Efficiency.
• Updated Manual Partitioning of Global Memory section.
• Added the section Strategies for Optimizing FPGA Area Usage.

December 2013 13.1.1 • Updated the section Specify a Maximum Work-Group Size or a Required Work-
Group Size.

• Added the section Heterogeneous Memory Buffers.
• Updated the section Single Work-Item Execution.
• Added the section Performance Warning Messages.
• Updated the section Single Work-Item Kernel Programming Considerations.

November 2013 13.1.0 • Reorganized information flow.
• Updated the section Intel FPGA SDK for OpenCL Compilation Flow.
• Updated the section Pipelines; inserted the figure Example Multistage Pipeline

Diagram.
• Removed the following figures:

— Instruction Flow through a Five-Stage Pipeline Processor.
— Vector Addition Kernel Compiled to an FPGA.
— Effect of Kernel Vectorization on Array Summation.
— Data Flow Implementation of a Four-Element Accumulation Kernel.
— Data Flow Implementation of a Four-Element Accumulation Kernel with Loop

Unrolled.
— Complete Loop Unrolling.
— Unrolling Two Loop Iterations.
— Memory Master Interconnect.
— Local Memory Read and Write Ports.
— Local Memory Configuration.

• Updated the section Good Design Practices.
• Removed the following sections:

— Predicated Execution.
— Throughput Analysis.
— Case Studies.

• Updated and renamed Optimizing Data Processing Efficiency to Optimization of
Data Processing Efficiency.

• Renamed Replicating Compute Units versus Kernel SIMD Vectorization to
Compute Unit Replication versus Kernel SIMD Vectorization.

• Renamed Using num_compute_units and num_simd_work_items Together to
Combination of Compute Unit Replication and Kernel SIMD Vectorization.

• Updated and renamed Memory Streaming to Contiguous Memory Accesses.

continued...

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Updated and renamed Optimizing Memory Access to General Guidelines on
Optimizing Memory Accesses.

• Updated and renamed Optimizing Memory Efficiency to Optimization of Memory
Access Efficiency.

• Inserted the subsection Single Work-Item Execution under Optimization of
Memory Access Efficiency.

June 2013 13.0 SP1.0 • Updated support status of OpenCL kernel source code containing complex exit
paths.

• Updated the figure Effect of Kernel Vectorization on Array Summation to correct
the data flow between Store and Global Memory.

• Updated content for the unroll pragma directive in the section Loop Unrolling.
• Updated content of the Local Memory section.
• Updated the figure Local Memories Transferring Data Blocks within Matrices A

and B to correct the data transfer pattern in Matrix B.
• Removed the figure Loop Unrolling with Vectorization.
• Removed the section Optimizing Local Memory Bandwidth.

May 2013 13.0.1 • Updated terminology. For example, pipeline is replaced with compute unit;
vector lane is replaced with SIMD vector lane.

• Added the following sections under Good Design Practices:
— Preprocessor Macros.
— Floating-Point versus Fixed-Point Representations.
— Recommended Optimization Methodology.
— Sequence of Optimization Techniques.

• Updated code fragments.
• Updated the figure Data Flow with Multiple Compute Units.
• Updated the figure Compute Unit Replication versus Kernel SIMD Vectorization.
• Updated the figure Optimizing Throughput Using Compute Unit Replication and

SIMD Vectorization.
• Updated the figure Memory Streaming.
• Inserted the figure Local Memories Transferring Data Blocks within Matrices A

and B.
• Reorganized the flow of information. Number of figures, tables, and examples

have been updated.
• Included information on new kernel attributes: max_share_resources and

num_share_resources.

May 2013 13.0.0 • Updated pipeline discussion.
• Updated case study code examples and results tables.
• Updated figures.

November 2012 12.1.0 Initial release.

A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices
Guide

683521 | 2022.12.19

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Best%20Practices%20Guide%20(683521%202022.12.19)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide
	Contents
	1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide
	1.1. FPGA Overview
	1.2. Pipelines
	1.3. Single Work-Item Kernel versus NDRange Kernel

	2. Reviewing Your Kernel's report.html File
	2.1. High-Level Design Report Layout
	2.2. Reviewing the Summary Report
	2.3. Viewing Throughput Bottlenecks in the Design
	2.4. Using Views
	2.4.1. Features of the System Viewer
	2.4.1.1. Reviewing System Information
	2.4.1.2. Reviewing Global Memory Information
	2.4.1.3. Reviewing Block Information
	2.4.1.4. Reviewing Cluster Information

	2.4.2. Features of the Kernel Memory Viewer
	2.4.3. Features of the Schedule Viewer

	2.5. Analyzing Throughput
	2.5.1. Reviewing Loop Information

	2.6. Reviewing Area Information
	2.6.1. Area Report Message for Board Interface
	2.6.2. Area Report Message for Function Overhead
	2.6.3. Area Report Message for State
	2.6.4. Area Report Message for Feedback
	2.6.5. Area Report Messages for Private Variable Storage
	2.6.5.1. Area Report Message for Constant Memory

	2.7. Optimizing an OpenCL Design Example Based on Information in the HTML Report
	2.8. Accessing HLD FPGA Reports in JSON Format

	3. OpenCL Kernel Design Concepts
	3.1. Kernels
	3.2. Global Memory Interconnect
	3.3. Local Memory
	3.3.1. Changing the Memory Access Pattern Example

	3.4. Loops in a Single Work-Item Kernel
	3.4.1. Trade-Off Between Initiation Interval and Maximum Frequency
	3.4.2. Loop-Carried Dependencies that Affect the Initiation Interval of a Loop
	3.4.3. Nested Loops
	3.4.3.1. Reducing the Area Consumed by Nested Loops Using loop_coalesce

	3.4.4. Loop Speculation
	3.4.5. Loop Fusion
	3.4.6. Loop Bottlenecks

	3.5. Channels
	3.6. Load-Store Units
	3.6.1. Load-Store Unit Types
	3.6.2. Load-Store Unit Modifiers
	3.6.3. Controlling the Load-Store Units
	3.6.4. When to Use Each LSU

	4. OpenCL Kernel Design Best Practices
	4.1. Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes
	4.1.1. Characteristics of Channels and Pipes
	4.1.2. Execution Order for Channels and Pipes
	4.1.3. Optimizing Buffer Inference for Channels or Pipes
	4.1.4. Best Practices for Channels and Pipes

	4.2. Unrolling Loops
	4.3. Optimizing Floating-Point Operations
	4.3.1. Floating-Point versus Fixed-Point Representations

	4.4. Allocating Aligned Memory
	4.5. Aligning a Struct with or without Padding
	4.6. Maintaining Similar Structures for Vector Type Elements
	4.7. Avoiding Pointer Aliasing
	4.8. Avoid Expensive Functions
	4.9. Avoiding Work-Item ID-Dependent Backward Branching

	5. Profiling Your Kernel to Identify Performance Bottlenecks
	5.1. Best Practices for Profiling Your Kernel
	5.2. Instrumenting the Kernel Pipeline with Performance Counters (-profile)
	5.3. Obtaining Profiling Data During Runtime
	5.3.1. Invoking the Profiler Runtime Wrapper
	5.3.1.1. Splitting Execution and Data Post Processing

	5.3.2. Viewing Profiling Data Using Intel VTune™ Profiler

	5.4. Reducing Area Resource Use While Profiling
	5.5. Temporal Performance Collection
	5.5.1. Profiling Autorun Kernels

	5.6. Performance Data Types
	5.7. Interpreting the Profiling Information
	5.7.1. Stall, Occupancy, Bandwidth
	5.7.2. Stalling Channels
	5.7.3. Channel Depths

	5.8. Profiler Analyses of Example OpenCL Design Scenarios
	5.8.1. High Stall Percentage
	5.8.2. Low Occupancy Percentage
	5.8.3. High Stall and High Occupancy Percentages
	5.8.4. No Stalls, Low Occupancy Percentage, and Low Bandwidth
	5.8.5. No Stalls, High Occupancy Percentage, and Low Bandwidth
	5.8.6. High Stall and Low Occupancy Percentages

	5.9. Intel FPGA Dynamic Profiler for OpenCL Limitations

	6. Strategies for Improving Single Work-Item Kernel Performance
	6.1. Addressing Single Work-Item Kernel Dependencies Based on Optimization Report Feedback
	6.1.1. Removing Loop-Carried Dependency
	6.1.2. Relaxing Loop-Carried Dependency
	6.1.3. Transferring Loop-Carried Dependency to Local Memory
	6.1.4. Relaxing Loop-Carried Dependency by Inferring Shift Registers
	6.1.5. Removing Loop-Carried Dependencies Caused by Accesses to Memory Arrays

	6.2. Good Design Practices for Single Work-Item Kernel

	7. Strategies for Improving NDRange Kernel Data Processing Efficiency
	7.1. Specifying a Maximum Work-group Size or a Required Work-Group Size
	7.2. Kernel Vectorization
	7.3. Multiple Compute Units
	7.3.1. Compute Unit Replication versus Kernel SIMD Vectorization

	7.4. Combination of Compute Unit Replication and Kernel SIMD Vectorization
	7.5. Reviewing Kernel Properties and Loop Unroll Status in the HTML Report

	8. Strategies for Improving Memory Access Efficiency
	8.1. General Guidelines on Optimizing Memory Accesses
	8.2. Optimize Global Memory Accesses
	8.2.1. Contiguous Memory Accesses
	8.2.2. Manual Partitioning of Global Memory
	8.2.2.1. Heterogeneous Memory Buffers

	8.2.3. Optimizing for Two or More Banks of Global Memory

	8.3. Performing Kernel Computations Using Constant, Local or Private Memory
	8.3.1. Constant Cache Memory
	8.3.2. Preloading Data to Local Memory
	8.3.3. Storing Variables and Arrays in Private Memory

	8.4. Improving Kernel Performance by Banking the Local Memory
	8.4.1. Optimizing the Geometric Configuration of Local Memory Banks Based on Array Index

	8.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
	8.6. Minimizing the Memory Dependencies for Loop Pipelining
	8.7. Static Memory Coalescing

	9. Strategies for Optimizing FPGA Area Usage
	9.1. Compilation Considerations
	9.2. Board Variant Selection Considerations
	9.3. Memory Access Considerations
	9.4. Arithmetic Operation Considerations
	9.5. Data Type Selection Considerations

	10. Strategies for Optimizing Intel Stratix 10 OpenCL Designs
	10.1. Reducing Channel Overhead
	10.1.1. Reducing the Number of Kernels
	10.1.2. Using a Single Kernel to Describe Systolic Arrays
	10.1.3. Using Non-Blocking Channels

	10.2. Optimizing Loop Control
	10.2.1. Simplifying Loop-Carried Dependencies in Intel Stratix 10 OpenCL Designs

	10.3. Simplifying Memory Access to Local Memories
	10.4. On-Chip Storage of Reused Data
	10.5. Optimizing Data Path Control
	10.6. Creating RTL Modules
	10.6.1. Reset Recommendations

	11. Strategies for Improving Performance in Your Host Application
	11.1. Multi-Threaded Host Application
	11.2. Utilizing Hardware Kernel Invocation Queue
	11.2.1. Double Buffered Host Application Utilizing Kernel Invocation Queue

	12. Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide Archives
	A. Document Revision History for the Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide

