当前位置:首页 > AI > 正文内容

基于低性能MCU的DP深度学习可研

chanra1n4年前 (2021-04-29)AI4974

待续...

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:http://myfpga.cn/index.php/post/191.html

分享给朋友:

“基于低性能MCU的DP深度学习可研” 的相关文章

解决tfClassifier训练报错的问题 修正后python 适用于tensorflow2.x python3.x

解决tfClassifier训练报错的问题 修正后python 适用于tensorflow2.x python3.x

# -*- coding: utf-8 -*-"""Created on Sun Dec 29 19:21:08 2019@原作者: xiuzhang Eastmount CSDN@修改作者:ChanRa1n修正问题:TensorFlow版本低,学习速率过高,修正为0....

C语言简单实现三层神经网络

C语言简单实现三层神经网络

//转自  #include "stdio.h" #include "stdlib.h" #include "time.h" #include "math.h"...

基于M5Stack的UnitV2实现的口罩检测系统(边缘计算+上位机+网站前后端)

基于M5Stack的UnitV2实现的口罩检测系统(边缘计算+上位机+网站前后端)

硬件介绍及实现的功能    本项目实现了一个口罩检测的系统,采用M5Stack提供的M5Stack UnitV2设备,并以该设备为核心。UnitV2设备以Sigmstar SSD202D为核心,通过GC2145摄像头采集图像信息,使用OpenCV和腾讯的开源N...

玩客云安装Armbian基于PaddleLite实现图片分类和目标检查 Cortex-A5等其他可参考

玩客云安装Armbian基于PaddleLite实现图片分类和目标检查 Cortex-A5等其他可参考

本教程为本站原创,转载请注明本网站链接,否则视为侵权!如果朋友还没有安装Armbian,或者怎么折腾也折腾不好,请直接翻到文章最后下载img文件!教程中碰到出错的地方,可以重复运行代码尝试!其他的ArmV7 32位的也可以参考本文,图片分类速度:1.1帧/秒,每张图片耗时约900ms,生产用途应该是...

基于CycloneV使用Paddle Lite,并分别使用单独HPS和FPGA加速对比效果。

基于CycloneV使用Paddle Lite,并分别使用单独HPS和FPGA加速对比效果。

第一部分、仅使用HPS进行计算第一步、通过ssh链接至开发板第二步、解决apt-get存在的问题chmod 644 /usr/lib/sudo/sudoers.so && chown -R root /usr/li...

ZYNQ7010在PYNQ环境下使用NPU加速神经网络推理

ZYNQ7010在PYNQ环境下使用NPU加速神经网络推理

步骤一、链接ssh并上传NPU SDK 步骤二、插入NPU,并给NPU赋予权限sudo chmod 666 /dev/sg*步骤三、修改最大字节数find /sys/devices/ -name max_sectors -exec sh -c 'ech...