当前位置:首页 > AI > 正文内容

基于低性能MCU的DP深度学习可研

chanra1n5年前 (2021-04-29)AI5823

待续...

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/191.html

分享给朋友:

“基于低性能MCU的DP深度学习可研” 的相关文章

解决tfClassifier训练报错的问题 修正后python 适用于tensorflow2.x python3.x

解决tfClassifier训练报错的问题 修正后python 适用于tensorflow2.x python3.x

# -*- coding: utf-8 -*-"""Created on Sun Dec 29 19:21:08 2019@原作者: xiuzhang Eastmount CSDN@修改作者:ChanRa1n修正问题:TensorFlow版本低,学习速率过高,修正为0....

PHP使用SOCKET调用TensorFlow服务器实现图片鉴黄

PHP使用SOCKET调用TensorFlow服务器实现图片鉴黄

PHP代码<?php define("UNIX_DOMAIN","/socks/tfserver.sock"); $socket = socket_create(AF_UNIX, SOCK_STREAM, 0)...

基于CycloneV使用Paddle Lite,并分别使用单独HPS和FPGA加速对比效果。

基于CycloneV使用Paddle Lite,并分别使用单独HPS和FPGA加速对比效果。

第一部分、仅使用HPS进行计算第一步、通过ssh链接至开发板第二步、解决apt-get存在的问题chmod 644 /usr/lib/sudo/sudoers.so && chown -R root /usr/li...

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

文头先放上要使用的Python推理脚本。 # -*- coding: UTF-8 -*- import os import cv2 import time import threading from&nb...