当前位置:首页 > AI > 正文内容

基于低性能MCU的DP深度学习可研

chanra1n5年前 (2021-04-29)AI5881

待续...

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/191.html

分享给朋友:

“基于低性能MCU的DP深度学习可研” 的相关文章

解决tfClassifier训练报错的问题 修正后python 适用于tensorflow2.x python3.x

解决tfClassifier训练报错的问题 修正后python 适用于tensorflow2.x python3.x

# -*- coding: utf-8 -*-"""Created on Sun Dec 29 19:21:08 2019@原作者: xiuzhang Eastmount CSDN@修改作者:ChanRa1n修正问题:TensorFlow版本低,学习速率过高,修正为0....

简单OpenCV人脸识别

简单OpenCV人脸识别

# -*- coding: utf-8 -*- """ Created on Sat Dec  5 22:39:13 2020 @author:&nb...

C语言简单实现三层神经网络

C语言简单实现三层神经网络

//转自  #include "stdio.h" #include "stdlib.h" #include "time.h" #include "math.h"...

玩客云安装Armbian基于PaddleLite实现图片分类和目标检查 Cortex-A5等其他可参考

玩客云安装Armbian基于PaddleLite实现图片分类和目标检查 Cortex-A5等其他可参考

本教程为本站原创,转载请注明本网站链接,否则视为侵权!如果朋友还没有安装Armbian,或者怎么折腾也折腾不好,请直接翻到文章最后下载img文件!教程中碰到出错的地方,可以重复运行代码尝试!其他的ArmV7 32位的也可以参考本文,图片分类速度:1.1帧/秒,每张图片耗时约900ms,生产用途应该是...

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

文头先放上要使用的Python推理脚本。 # -*- coding: UTF-8 -*- import os import cv2 import time import threading from&nb...

(原创)联合网页图片爬虫和PaddlePaddle,对图片进行爬取并分类

(原创)联合网页图片爬虫和PaddlePaddle,对图片进行爬取并分类

#首先是Python语言的测试代码,如需服务端部署,请见文末。 import os import time import argparse import requests import re import io from&nb...