当前位置:首页 > AI > 正文内容

基于低性能MCU的DP深度学习可研

chanra1n4年前 (2021-04-29)AI5025

待续...

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/191.html

分享给朋友:

“基于低性能MCU的DP深度学习可研” 的相关文章

玩客云安装Armbian基于PaddleLite实现图片分类和目标检查 Cortex-A5等其他可参考

玩客云安装Armbian基于PaddleLite实现图片分类和目标检查 Cortex-A5等其他可参考

本教程为本站原创,转载请注明本网站链接,否则视为侵权!如果朋友还没有安装Armbian,或者怎么折腾也折腾不好,请直接翻到文章最后下载img文件!教程中碰到出错的地方,可以重复运行代码尝试!其他的ArmV7 32位的也可以参考本文,图片分类速度:1.1帧/秒,每张图片耗时约900ms,生产用途应该是...

使用PaddleX对大量图片进行分类(仅包含预测的内容)

使用PaddleX对大量图片进行分类(仅包含预测的内容)

# -*- coding: UTF-8 -*- import os import cv2 from shutil import copyfile import numpy as&...

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

文头先放上要使用的Python推理脚本。 # -*- coding: UTF-8 -*- import os import cv2 import time import threading from&nb...

(仅供娱乐)基于FFmpeg和PaddleX实现视频分类

(仅供娱乐)基于FFmpeg和PaddleX实现视频分类

代码是一个视频分类程序,它使用PaddleX框架中的深度学习模型对视频截图进行分类推理,并将分类结果应用于视频分类。它的工作流程是:导入必要的Python库:os、shlex、subprocess、shutil、paddlex、cv2、defaultdict。设置调试模式:DEBUG_MODE =...