当前位置:首页 > 复变和积分变换 > 正文内容

10.复数的积分

chanra1n5年前 (2019-12-26)复变和积分变换4339

奇点:函数不解析的点

eg:

设存在正向圆周|z|为2的函数C,φez/z

在ez/z中,z≠0,即其一个奇点为Z0=0


判断范围内有几个奇点

需要结合    正向圆周|z|为2     这句话

在圆周范围内的奇点数量,即为所求


在范围内没有奇点的情况下,φC=0

有一个奇点的情况下,可使用公式

φCf(z)/(z-z0)=2πif(z0)

φCf(z)/(z-z0)n+1=2πi*f(n)(z0)/n!    (f(n)(z0)为对f求n次导)

有多个奇点的情况下,可用公式

∑φC

即将不同奇点下的值相加



扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/93.html

分享给朋友:

“10.复数的积分” 的相关文章

1.复数的基本运算

1.复数的基本运算

什么是复数呢?z=a+bi(a,b均为实数)z便是复数,i是-1的开方,即i*i=-1,a为复数的实部,b为复数的虚部复数的基本运算规律:(a+bi)+(c+di)=(a+b)+(c+d)i (a+bi)-(c+di)=(a-b)+(c-d)i (a+bi)*(c+di)=a*b+a*di+c*...

4.三角式、代数式、指数式转换

4.三角式、代数式、指数式转换

简洁明了,直接看公式:代数式:z=a+bi三角式:z=r(cosθ+isinθ)   其中r=|z|指数式:z=reiθ例如:z=2+i 求其三角式和指数式r=|z|=51/2θ=arctan1/2=π/6即三角式为z=51/2(cos30°+isin30°)指数式为z=51/2...

5.常规方程和复数方程的转换

5.常规方程和复数方程的转换

ax+by=c,求改直角坐标方程的复数形式令x=(z+z*)/2y=(z-z*)/2i带入ax+by=c→a(z+z*)/2+b(z-z*)/2i=cz=a+bi,求该复数方程关于x,y的参数方程形式x=Re(z)y=Im(z)存在关于x、y的参数方程,求对应的复数形式方程x=fx(x)y=fy(y...

6.复数的象、映射

6.复数的象、映射

存在z=fz(z)在映射w=fw(z)下的象→w=fw(fz(z))例如求z=1+2i在映射w=z2下的象→w=(1+2i)2=-3-4i存在z满足0<arg(z)<π/3,求其在映射w=z3下的象1、设指数形式的复数方程    z=reiθ2、将...