当前位置:首页 > 复变和积分变换 > 正文内容

8.复数的求导与解析

chanra1n5年前 (2019-12-26)复变和积分变换8217

我们先来回忆一下一般函数的求导

1.C'=0(C为常数);

2.(Xn)'=nX(n-1) (n∈R);

3.(sinX)'=cosX;

4.(cosX)'=-sinX;

5.(aX)'=aXIna (ln为自然对数);

6.(logaX)'=1/(Xlna) (a>0,且a≠1);

7.(tanX)'=1/(cosX)2=(secX)2

8.(cotX)'=-1/(sinX)2=-(cscX)2

9.(secX)'=tanX secX;

10.(cscX)'=-cotX cscX;


复数的求导可以分开实数和虚数部分

(z)'=(u+vi)'=udx+vdxi

eg:

z=x+y+xyi

u=x+y    v=xy

u'=1    v'=y

(z)'=1+yi


eg:

z=Lnz

(z)'=1/z    ->可以对照上面一般函数求导

z=πiz3

(z)'=3πiz2


解析->函数在某点和某领域内处处可导


解析->可导->连续->有极限

推导是单向的,反过来就不行!


函数可导与解析的区域计算

可导->满足以下两个条件

1    u'x=v'y

2    u'y=-v'x

在所以满足条件的解内可导


解析->若可导的情况下满足以下条件

1    x=x

2    y=y

则函数在(x,y)内解析,其他部分不解析

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/91.html

分享给朋友:

“8.复数的求导与解析” 的相关文章

3.模、辐角、辐角主值

3.模、辐角、辐角主值

取一复数z=a+bi,求z的模、辐角、辐角主值|z|=(a2+b2)1/2 //Z的模 arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角 ...

6.复数的象、映射

6.复数的象、映射

存在z=fz(z)在映射w=fw(z)下的象→w=fw(fz(z))例如求z=1+2i在映射w=z2下的象→w=(1+2i)2=-3-4i存在z满足0<arg(z)<π/3,求其在映射w=z3下的象1、设指数形式的复数方程    z=reiθ2、将...

10.复数的积分

10.复数的积分

奇点:函数不解析的点eg:设存在正向圆周|z|为2的函数C,φC ez/z在ez/z中,z≠0,即其一个奇点为Z0=0判断范围内有几个奇点需要结合    正向圆周|z|为2     这句话在圆周范围内的奇点数量...