当前位置:首页 > 复变和积分变换 > 正文内容

4.三角式、代数式、指数式转换

chanra1n6年前 (2019-12-23)复变和积分变换7015

简洁明了,直接看公式:

代数式:z=a+bi

三角式:z=r(cosθ+isinθ)   其中r=|z|

指数式:z=re

例如:

z=2+i 求其三角式和指数式

r=|z|=51/2

θ=arctan1/2=π/6

三角式为z=51/2(cos30°+isin30°)

指数式为z=51/2eπi/6


扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/87.html

分享给朋友:

“4.三角式、代数式、指数式转换” 的相关文章

6.复数的象、映射

6.复数的象、映射

存在z=fz(z)在映射w=fw(z)下的象→w=fw(fz(z))例如求z=1+2i在映射w=z2下的象→w=(1+2i)2=-3-4i存在z满足0<arg(z)<π/3,求其在映射w=z3下的象1、设指数形式的复数方程    z=reiθ2、将...

8.复数的求导与解析

8.复数的求导与解析

我们先来回忆一下一般函数的求导1.C'=0(C为常数);2.(Xn)'=nX(n-1) (n∈R);3.(sinX)'=cosX;4.(cosX)'=-sinX;5.(aX)'=aXIna (ln为自然对数);6.(logaX)'=1/(Xl...

12.留数和留数定理

12.留数和留数定理

奇点分为孤立奇点和非孤立奇点孤立奇点分为:本性奇点,可去奇点,极点非孤立奇点->Ln(x)、ln(x) x≤0本性奇点->若不存在极限 则为本性奇点(简单地说,看起来比较复杂的函数,例如cosz/(z-3))可去奇点->将奇点带入函数式,若分子分母为同次方,则为可去奇点 例如f(z...