当前位置:首页 > 复变和积分变换 > 正文内容

4.三角式、代数式、指数式转换

chanra1n6年前 (2019-12-23)复变和积分变换6608

简洁明了,直接看公式:

代数式:z=a+bi

三角式:z=r(cosθ+isinθ)   其中r=|z|

指数式:z=re

例如:

z=2+i 求其三角式和指数式

r=|z|=51/2

θ=arctan1/2=π/6

三角式为z=51/2(cos30°+isin30°)

指数式为z=51/2eπi/6


扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://myfpga.cn/index.php/post/87.html

分享给朋友:

“4.三角式、代数式、指数式转换” 的相关文章

3.模、辐角、辐角主值

3.模、辐角、辐角主值

取一复数z=a+bi,求z的模、辐角、辐角主值|z|=(a2+b2)1/2 //Z的模 arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角 ...

8.复数的求导与解析

8.复数的求导与解析

我们先来回忆一下一般函数的求导1.C'=0(C为常数);2.(Xn)'=nX(n-1) (n∈R);3.(sinX)'=cosX;4.(cosX)'=-sinX;5.(aX)'=aXIna (ln为自然对数);6.(logaX)'=1/(Xl...

9.调和函数

9.调和函数

调和函数:如果二元函数f(x,y)在区域Ω内有二阶连续偏导数且满足拉普拉斯方程,则称二元函数f(x,y)为区域Ω中的调和函数。首先需要说明什么是连续eg:1/x    ->x不能取0lnx    ->x需要大...

11.复数级数及其相关计算

11.复数级数及其相关计算

在复数的级数判断收敛和发散中,需要进行两步判断1、当n趋近于∞时,实部和虚部同时趋近于02、实部级数和虚部级数同时收敛只有同时满足两个条件的函数,才是级数收敛的,否则都是发散的倘若难以使用以上两条,可以使用带入的方法,如下(1)eg:解:(1)(2)   (3)(4)性...