4.三角式、代数式、指数式转换
简洁明了,直接看公式:
代数式:z=a+bi
三角式:z=r(cosθ+isinθ) 其中r=|z|
指数式:z=reiθ
例如:
z=2+i 求其三角式和指数式
r=|z|=51/2
θ=arctan1/2=π/6
即
三角式为z=51/2(cos30°+isin30°)
指数式为z=51/2eπi/6
简洁明了,直接看公式:
代数式:z=a+bi
三角式:z=r(cosθ+isinθ) 其中r=|z|
指数式:z=reiθ
例如:
z=2+i 求其三角式和指数式
r=|z|=51/2
θ=arctan1/2=π/6
即
三角式为z=51/2(cos30°+isin30°)
指数式为z=51/2eπi/6
取一复数z=a+bi,求z的模、辐角、辐角主值|z|=(a2+b2)1/2 //Z的模 arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角 ...
我们先来回忆一下一般函数的求导1.C'=0(C为常数);2.(Xn)'=nX(n-1) (n∈R);3.(sinX)'=cosX;4.(cosX)'=-sinX;5.(aX)'=aXIna (ln为自然对数);6.(logaX)'=1/(Xl...
调和函数:如果二元函数f(x,y)在区域Ω内有二阶连续偏导数且满足拉普拉斯方程,则称二元函数f(x,y)为区域Ω中的调和函数。首先需要说明什么是连续eg:1/x ->x不能取0lnx ->x需要大...
在复数的级数判断收敛和发散中,需要进行两步判断1、当n趋近于∞时,实部和虚部同时趋近于02、实部级数和虚部级数同时收敛只有同时满足两个条件的函数,才是级数收敛的,否则都是发散的倘若难以使用以上两条,可以使用带入的方法,如下(1)eg:解:(1)(2) (3)(4)性...